Worldwide Sumitomo Network

Sumitomo Machinery Corporation of America (SMA) 4200 Holland Blvd. Chesapeake, VA 23323, U.S.A. Tel: (1) <u>757-485-3355</u>

Fax: (1) 757-487-3193

Canada SM-Cyclo of Canada, Ltd. (SMC) 1045 South Service Road, Canada L6L 6K3

Tel: (1) 905-469-1050 Fax: (1) 905-469-1055

Mexico SM-Cyclo De Mexico, S.A. de C.V. (SMME) Calle "C" No. 506A Parque Industrial

Almacentro Apodaca, N. L., Mexico 66600 Fax: (52) 81-8369-3699

SM-Cyclo Reductores Do Brasil, Ltda. (SMBR) Av. Fagundes Filho, 191 Metro Sao Judas Edificio Houston-Sala H123 Sao Paulo-SP Brazil 04304-010

Chile SM-Cyclo De Chile, Ltda. (SMCH) San Pablo Ave, 3507 Quinta Nomal, Santiago, Chile Tel: (56) 2-786-6963 Fax: (56) 2-786-6964

Fax: (55) 11-5585-9990

Argentina

SM-Cyclo De Argentina S.A. (SMAR) Montes de Oca #6719, (B1606BMG) Munro, Buenos Aires, Argentina Tel: (54) 11-4765-5288 Fax: (54) 11-4765-5517

United Kingdom SM-Cyclo U.K. Ltd. (SMUK) 29 Bergen Way, Kingston upon Hull, East Yorkshire HU7 OYQ

United Kingdom Tel: (44) 1482-790340 Fax: (44) 1482-790321

SM-Cyclo France E.U.R.L. (SMFR) F-93126 La Courneuve, Tel: (33) 149-929494

Fax: (33) 149-929490

Via dell' Artigianato 231-20010

Tel: (39) 02-9356-2121 Fax: (39) 02-9356-9893

Netherlands

SM-Cyclo Benelux BV (SMBE) Den Engelsman 16D NL-6026 RB Tel: (31) 495599777 Fax: (31) 495593177

SM-Cyclo Scandinavia AB (SMSC) Ridbanegtan 4213 77 Malmö, Sweden Postal Address: box 9178, SE-200 39 Malmö Fax: (46) 40220035

Spain SM-Cydo Iberia, S.L. (SMIB) C/Landabarri N^o4 Escalera 1, 2°izqda Leioa 48940 Vizcaya Spain Tel: (34) 944-805389

Sumitomo (SHI) Cyclo Drive Germany, GmbH (SCG) Cyclostraße 92 85229 Markt Indersdorf Germany Tel: (49) 8136-66-0 Fax: (49) 8136-5771

Gruentalerstraße 30A A4028 Linz, Tel: (43) 732-330958 Fax: (43) 732-331978

Sumitomo (SHI) Cyclo Drive China, Ltd. (SCT) Room 2606, Raffles City, No. 268, Middle Xizang Road, Shanghai 200001,

Tel: (86) 21-6340-4000 Fax: (86) 21-6340-3673

Hong Kong SM-Cyclo of Hong Kong Co., Ltd. (SMHK) Unit 1802, 18/F, Park Building, 476 Castle Peak Road, Kowloon Hong Kong Tel: (852) 2460-1881 Fax: (852) 2460-1882

SingaporeSumitomo (SHI) Cyclo Drive Asia Pacific Pte. Ltd. (SCA) No.36 Tuas South Street 3, Singapore 638031 Tel: (65) 6863-2238 Fax: (65) 6863-4238

SM-Cyclo (Malaysia) Sdn. Bhd. (SMMA) No.2, Jalan BP 4/1, Bandar Bukit Puchong, 47100 Puchong, Selangor Darul Ehsan, Malaysia Tel: (60) 3-8061-2909 Fax: (60) 3-8061-3909

Thailand

SM-Cyclo (Thailand) Co., Ltd. (SMTH) 195, Empire Tower Unit 1504, 15th Floor Yannawa Sathorn Bangkok 10120, Thailand Tel: (66) 2-670-0998 Fax: (66) 2-670-0999

Vietnam

Fax: (84) 8-925-6505

Sumitomo (SHI) Cyclo-Drive Asia Pacific Pte. Ltd. Representative Office in Ho Chi Minh Floor 4th, 99 Nguyen Thi Minh Khai Street World Ben Thanh, District 1, HCM, Vietnam Tel: (84) 8-925-6504

Australia

SM-Cyclo (Australia) Pty., Ltd. (SMAU) Arndell Park, NSW, 2148, Australia Postal: PO Box 319 Doonside NSW, 2767 Tel: (61) 2-8811-6555 Fax: (61) 2-8811-6500 National Telephone Number: 1-3000 DRIVE

Philippines

Sumitomo (SHI) Cyclo Drive Asia Pacific Pte. Ltd. Unit 23E Burgundy Corporate Tower 252 Sen. Gil Puyat Ave. Makati City, Fax: (63) 2-6800-6555

Sumi-Cyclo Drive India Private, Ltd. (SMIN) Survey No. 130, Hissa No. 02, Jeevan Nagar Next to T. V. S. Logistics,
Off Mumbai Bangalore By Pass, Tathawade, Pune 411 033, Tel: (91) 20-6674-2900

Fax: (91) 20-6674-2901

Taiwan Tatung SM-Cyclo Co., Ltd. (TSC) 22 Chungshan N. Road 3rd., Sec. Taipei, Taiwan 104, R.O.C. Tel: (886) 2-2595-7275 Fax: (886) 2-2595-5594

Korea

Sumitomo (SHI) Cyclo Drive Korea Ltd. (SCK) Royal Bldg. 9F Rm. 913, 5 Danju-dong, Jongro-Gu Seoul, Korea 110-721 Tel: (82) 2-730-0151 Fax: (82) 2-730-0156

Japan

Sumitomo Heavy Industries, Ltd. ThinkPark Tower, 1–1, Osaki 2–Chome Shinagawa-ku, Tokyo 141-6025, Japan Tel: (81) 3-6737-2511 Fax: (81) 3-6866-5160

CW18

Sumitomo Drive Technologies Always on the Move

New IB Series P1 Type

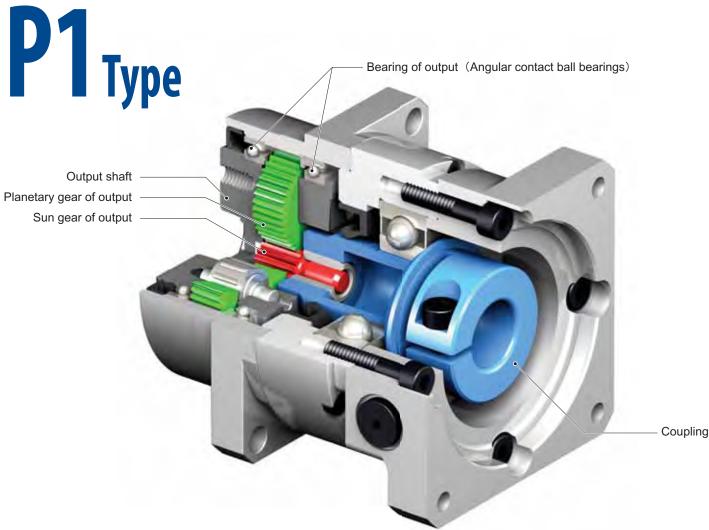
Low-Backlash Planetary Gear Reducer for Servo Motors

More Reduction Ratios! 1/3.7,1/11,1/81 Three-Minute Backlash Available! Jan. 2007

No. Z2004E-7.0 No. Z2004E-7

IB Series P1 Type

Table of Contents


Features	2
Standard Specification, Construction,	
and Mechanism	6
Nomenclature	7
Selection Table 1	
(Frame Size Combination Table for	
Each Motor Rated Speed)	8
Selection Table 2	
(Frame Size Combination Table for	
Each Servo Motor Manufacturers)	9
Yaskawa Electric Corporation	9
2. Mitsubishi Electric Corporation	13
3. Matsushita Electric Industrial	
Co., Ltd.	15
4. Sanyo Denki Co., Ltd.	··· 16
5. Fuji Electric FA Components &	
Systems	17
6. FANUC Ltd.	··· 18
7. KEYENCE	··· 19
Selection Table 3 (Rating Table)	20
(Allowable External Rating)	22
Selection Procedure	24
Dimension Drawings	26
Solid Shaft	26
Flange Shaft	53
Durability Check of Output Shaft Pa	rt 80
Formula for Calculation of Moment	
Inertia and GD ²	83
Formula for Calculation of Moment	of
Inertia, Load Torque, and Acceleration	on
Torque	84
Moment of Inertia (at Motor Shaft)	85
GD ² (at Motor Shaft)	86
Mechanical Precision of Output Par	t
of the Reducer	87
Motor Attachment Procedure	88
Motor Precision	89
Warranty and Safety Precautions	90

IB Series P1 Type

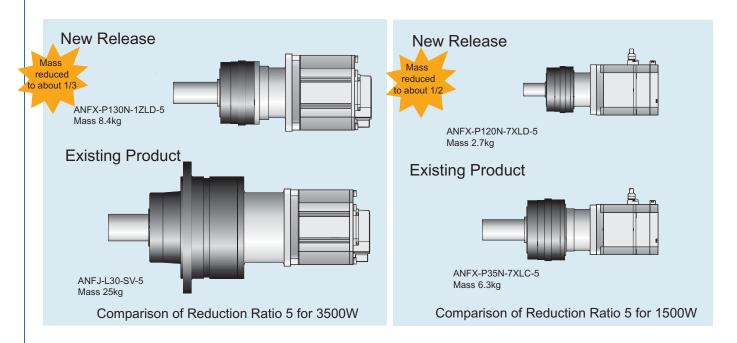
Low-backlash Planetary Gear Reducer for Servo Motors

Specification

- Backlash Initial backlash setting is 3 or 15-minute
- Rated torque 10.5-101Nm
- Motor capacity 50W-5000W
- Reduction ratio 1/3.7,1/5,1/9,1/11,1/15,1/21,1/33,1/45,1/81
- Allowable maximum input speed 6000r/min
- Reduction system Planetary gear mechanism

Features

- No.1 Compactness in the Industry
 Large diameter precision angular bearing, supporting
 output shaft, allows large radial load with compact casing.
- Responsiveness to Newest Servo Motors for Simpler Applications!
- Short delivery response

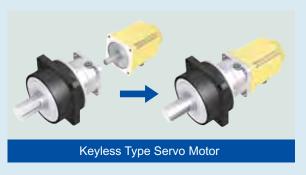

Purpose

- Transfer robots
- Peripheral equipment for robots
- FA equipment related
- Semi-conductor production machine
- Machine tools
- Loader drive and shaft motion
- Wrapping machines (bag making and pillow wrapping)
- Wood-working machine
- Medical equipment
- Monitoring camera
- Vending machine
- Analyzing machine
- Measuring equipment
- Laser processing machine

Sumitomo Drive Technologies

No. 1 Compactness in Our Industry

Significant size and mass reduction in low reduction ratio and medium capacity range.


Output shaft Variation

Three variations available to match customers' needs. Optimal selection possible for your application.

Assembly

Simple assembly. Directly connect servo motor and reducer with bolt (provided by customer) after delivery. Tighten motor shaft with hexagon wrench. Ready for immediate use.

IB Series P1 Type

Motion Control Drives Product Lineup

Refer to separate catalog No.F2001

Solid shaft type Solid shaft type Flange shaft type 5.0 2.0 2.0 3.7 5 9 11 15 21 33 45 81 Ratio

This catalog

Speed Reducer for Servo Motors

Refer to separate catalog No.Z2002

Refer to separate catalog No.C2103

IB Series Manufacture Range

Motor Rated Speed 3000 [r/min]

Servo motor				Redu	iction	Ratio			
Capacity [W]	3.7	5	9	11	15	21	33	45	81
50									
100									
200		Ne	ew Rel	0000					
300									
400			P1 ty	ре					
500									
600									
750									
1000									
1200									
1500									
2000									
2500							L typ	е	
3000									
3500							*2		
4000						*1			
4500									
5000									

Reduction ratio of Ltype: 1/20 for *1 and 1/29 for *2

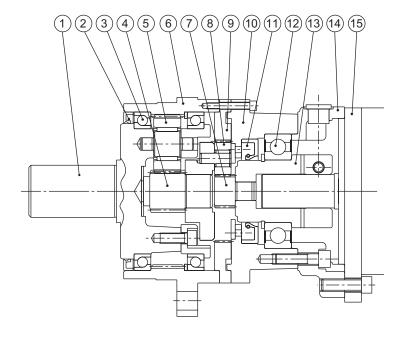


Sumitomo Drive Technologies

Motion Control Drive of Sumitomo Drive Technologies are available for various areas

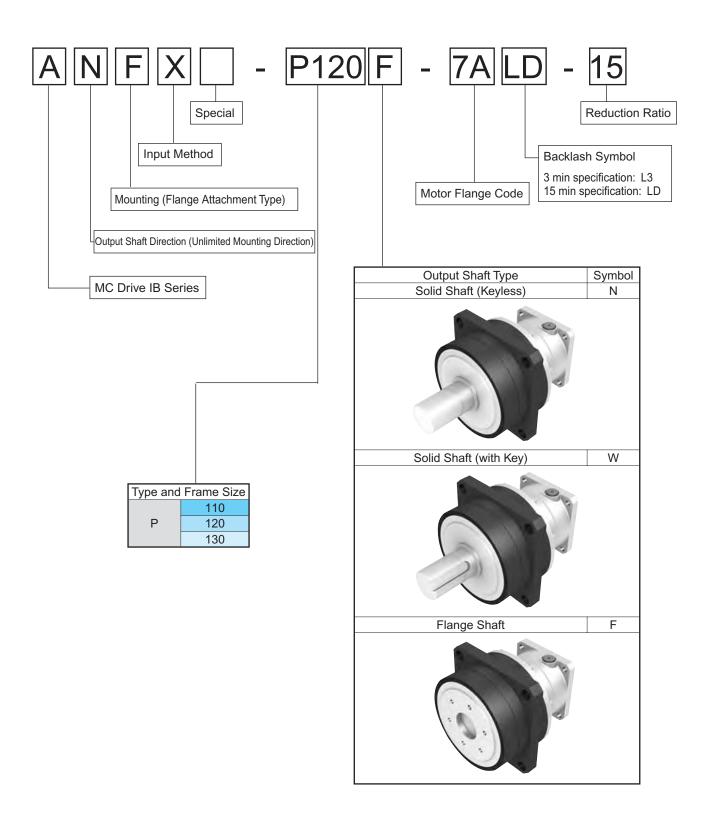
requiring precision control.

Application Examples



Standard Specification, Construction, and Mechanism

Standard Specification


Backlash	Initial backlash setting is 3 or 15-minute.
Efficiency	90% or more at rated output torque (with reduction ratio 3.7, 5, 9)
Noise Level	70dB(A) 0.5m *Varies depending on models and mounting condition.
Lubrication system	Grease lubrication The unit is filled with grease at the time of shipping. It is ready for immediate use.
Reduction system	Planetary gear mechanism Single stage type (Reduction Ratio: 3.7, 5, 9) Double stage type (Reduction Ratio: 11, 15, 21, 33, 45, 81)
Output shaft rotation direction	Same direction as the rotation direction of input gear.
Material	Case with internal gear and gear: Chrome-Molybdenum Steel Joint cover, Adapter prate: Aluminum alloy Output and input shaft: S45C
Mounting location	Indoor (without dust and water)
Ambient temperature	0~40°C Consult us when the operation condition exceeds the above and when special grease is necessary such as food manufacturing machine.
Ambient humidity	85% or less. There should be no condensation.
Altitude	1000m or below
Ambient atmosphere	There should be no corrosive gases, explosive gases, vapor, or dust.
Mounting angle	All angles possible (no limitation)
Paint	Black oxide coating for housing with internal gear Output shaft comes with rustproof treatment at the time of shipping.
Actual reduction ratio	3/11 is the actual reduction ratio for 1/3.7. All of the other reduction ratios are whole numbers.
Surface temperature of the reducer	80°C or below. Consult us when operating continuously.

Construction Drawing

Number	Part Name
1	Output Shaft
2	Oil Seal
3	Bearing of Output
4	Sun Gear of Output
5	Planetary Gear of Output
6	Casing with Internal Gear
7	Sun Gear of Input
8	Planetary Gear of Input
9	Internal Gear of Input
10	Joint Cover
11	Input Shaft Bearing
12	Oil Seal
13	Coupling
14	Adaptor Plate
15	Motor (Provided by Customers)

Fig. 1

Selection Table 1 (Frame Size Combination Table for Each Motor Rated Speed)

Rated Motor Speed 1000 [r/min]

rated Moto	л орс	,cu it	700 [i7								
Servo Moto		Reduction Ratio									
Capacity [W]	3.7 (3/11)	5	9	11	15	21	33	45	81		
50									P120		
100			P110			•	P120		P130		
200									•		
300				P120							
400							•	•			
500											
600				P130							
750						•					
1000											
1200		•									
1500											
2000	P130										
2500											
3000											
3500											
4000											
4500											
						1		l .			

Rated Motor Speed 1500 [r/min]

_	rtatoa moto	<i>,</i>	Speed rece [i/iiiii]										
ı	Servo Moto		Reduction Ratio										
ı	Capacity [W]	3.7	5	9	11	15	21	33	45	81			
l		(3/11)											
	50									P120			
	100			P110						•			
	200					•				P130			
	300									•			
	400				P120			P130					
╛	500												
l	600												
	750												
	1000				P130								
╛	1200												
l	1500												
╛	2000												
	2500	P130											
	3000												
	3500												
J	4000												
	4500												
1	5000												

Rated Moto	r Spe	Speed 2000 [r/min]									
Servo Moto		Reduction Ratio									
Capacity [W]		5	9	11	15	21	33	45	81		
	(3/11)	L			<u> </u>	L			ll		
50									•		
100			P110						P120		
200						•					
300							P120		P130		
400											
500					P120		P130				
600											
750											
1000											
1200					P130						
1500											
2000											
2500											
3000	P130										
3500											
4000											
4500											

Rated Motor Speed 3000 [r/min]

	Rated Moto	n Spe	eu st	וון טטע						
1	Servo Moto				Red	uction F	Ratio			
l	Capacity [W]	3.7	5	9	11	15	21	33	45	81
l		(3/11)	L				L		l	
1	50					نصنصن		ونبينيا	بزدزوا	
1	100			P110						P120
1	200	أحنانا								
1	300						•			
1	400									P130
1	500									•
1	600					P120		P130		
1	750									
1	1000									
1	1200									
1	1500					P130				
1	2000									
1	2500									
1	3000									
1	3500									
1	4000									
1	4500									
	5000									

Rated Motor Speed 4000 [r/min]

Rated Moto	л Орс	cu +c	JOO [I/							
Servo Moto		Reduction Ratio								
Capacity [W]	3.7	5	9	11	15	21	33	45	81	
	(3/11)									
50										
100									•	
200			P110							
300										
400										
500										
600										
750					P120			P130		
1000										
1200										
1500										
2000										
2500					P130					
3000										
3500										
4000										
4500										
5000										

No Load Running Torque [SI Unit]

Frame					Red	uction F	Ratio				
Size	Uni	3.7 (3/11)	5	9	11	15	21	33	45	81	
P110		0.25	0.20	0.16		0.20		0.14			
P120	N·m	0.60	0.40	0.30		0.35			0.26		
P130		1.00	0.70	0.55		0.60		0.45			

No Load Running Torque [Engineering Unit]

Frame					Red	uction F	Ratio				
Size	Uni	3.7 (3/11)	5	9	11	15	21	33	45	81	
P110		0.025	0.020	0.016		0.020		0.014			
P120	kgf⋅m	0.061	0.041	0.031		0.036			0.027		
P130		0.102	0.071	0.056		0.061			0.046		

^{*}Torque necessary at the input side to rotate the reducer at no load

^{*}This is the representative value when the ambient temperature is 20°C.

^{*}Refer to Selection Table 2 (on pages 9-18) for frame size combination for each servo motor manufacturer.

^{*}Refer to Selection Table 3 (on pages 20, 22-23) for rated torque, allowable maximum input speed, allowable peak torque, and allowable radial load for each frame size.

^{*}Refer to Selection Table 3 (on pages 21) for %ED of each speed.

^{*}Consult us when no load running torque is too large for your application. Special models for lowering no load running torque are available on request.

1. Yaskawa Electric Corporation

Σ V Series SGMJV Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of		Reduction Ratio								Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	SGMJV-A5**A2*	P110△	P110△	P110△	P110△	P110△	P110△	P110△	P110△	P110 ²	2D
100	SGMJV-01**A2*	P110△	P110△	P110△	P110△	P110△	P110△	P110	P110	P120△	2D
200	SGMJV-02**A2*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	SGMJV-04**A2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	SGMJV-08**A2*	P120	P120	P120	P120	P120	P120	P130	P130	-	1G

Σ V Series SGMAV Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction R	atio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	SGMAV-A5**A2*	P110△	P110△	P110△	P110△	P110△	P110△	P110△	P110△	P110 ²	2D
100	SGMAV-01**A2*	P110△	P110△	P110△	P110△	P110△	P110△	P110	P110	P120△	2D
200	SGMAV-02**A2*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	SGMAV-04**A2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
550	SGMAV-06**A2*	P110	P110	P120	P120	P120	P120	P130	P130	-	2R
750	SGMAV-08**A2*	P120	P120	P120	P120	P120	P120	P130	P130	-	1G

Σ V Series SGMGV Series (Rated speed: 1500 r/min)

		`									
Servo Motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
450	SGMGV-05**A2*	P110	P120	P120	P120	P120	P120	P130	P130	-	8E
850	SGMGV-09**A2*	P120	P120	P130	P130	P130	P130	-	-	-	7X
1300	SGMGV-13**A2*	P120	P120	P130	-	-	-	-	-	-	1S
2000	SGMGV-20**A2*	P130	P130	-	-	-	-	-	-	-	7Z
3000	SGMGV-30**A2*	P130	P130	-	-	-	-	-	-	-	0X
4400	SGMGV-44**A2*	P130	-	-	-	-	-	-	-	-	0X

Page of Dimension Table

[Page]	
--------	--

Frama Ciza	Output Chaft Tupa				Red	uction F	Ratio			
Frame Size	Output Shaft Type	3.7	5	9	11	15	21	33	45	81
P110	中実軸 (N,W)	26	27	28	29	30	31	32	33	34
PIIU	フランジ軸 (F)	53	54	55	56	57	58	59	60	61
P120	中実軸 (N,W)	35	36	37	38	39	40	41	42	43
P 120	フランジ軸 (F)	62	63	64	65	66	67	68	69	70
P130	中実軸 (N,W)	44	45	46	47	48	49	50	51	52
F 130	フランジ軸 (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ. Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked •.

1. Yaskawa Electric Corporation

Σ III Series SGMAS Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	SGMAS-A5A**2*	P110△	P110∆	P110 _△	P110∆	P110 _△	P110 _△	P110∆	P110 _△	P110 _∆	7J
100	SGMAS-01A**2*	P110△	P110∆	P110∆	P110∆	P110△	P110∆	P110	P110	P120∆	2D
200	SGMAS-02A**2*	P110	P110	P110	P110	P110	P110•	P110•	P120	P120•	2R
400	SGMAS-04A**2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
600	SGMAS-06A**2*	P110	P110	P120	P120	P120	P120	P130	P130	-	2R
750	SGMAS-08A**2*	P120	P120	P120	P120	P120	P120	P130	P130	-	7P

Σ III Series SGMPS Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction R	Ratio				Motor	
Capacity [W]	Servo Motor	3.7	3.7 5 9 11 15 21 33 45 81									
100	SGMPS-01A**2*	P110△	P110∆	P110 _△	P110∆	P110∆	P110∆	P110	P110	P120∆	2G	
200	SGMPS-02A**2*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2T	
400	SGMPS-04A**2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2T	
750	SGMPS-08A**2*	P120	P120	P120	P120	P120	P120	P130	P130	-	7R	
1500	SGMPS-15A**2*	P120	P120	P120	P130	P130	P130	-	-	-	7X	

Σ III Series SGMSS Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
1000	SGMSS-10A**2*	P120	P120	P120	P120	P120	P130	-	-	-	1L
1500	SGMSS-15A**2*	P120	P120	P120	P130	P130	P130	-	-	-	1L
2000	SGMSS-20A**2*	P120	P120	P130	P130	P130	-	-	-	-	1L
2500	SGMSS-25A**2*	P120	P120	P130		-	-	-	-	-	1L
3000	SGMSS-30A**2*	P130	P130	P130		-	-	-	-	-	1T
4000	SGMSS-40A**2*	P130	P130	-		-	-	-	-	-	1T
5000	SGMSS-50A**2*	P130	P130	-		-	-	-	-	-	1T

Page of Dimension Table

[Page]

Frame Size	Output Shaft Type				Red	uction F	Ratio			
Frame Size	Output Shall Type	3.7	5	9	11	15	21	33	45	81
P110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34
PIIU	Flange Shaft (F)	53	54	55	56	57	58	59	60	61
P120	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43
P 120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52
F 130	Flange Shaft (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ. Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked •.

Yaskawa Electric Corporation

Σ II Series SGMAH Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor	3.7	3.7 5 9 11 15 21 33 45 81								
50	SGMAH-A5***2*	P110△	P110∆	P110∆	P110∆	P110∆	P110 _△	P110∆	P110△	P110 _∆	7J
100	SGMAH-01***2*	P110△	P110∆	P110∆	P110∆	P110∆	P110∆	P110	P110	P120∆	2D
200	SGMAH-02***2*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	SGMAH-04***2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	SGMAH-08***2*	P120	P120	P120	P120	P120	P120	P130	P130	-	7P

Σ II Series SGMPH Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction F	Ratio				Motor	
Capacity [W]	Servo Motor	3.7	3.7 5 9 11 15 21 33 45 81									
100	SGMPH-01***2*	P110△	P110△	P110△	P110∆	P110∆	P110∆	P110	P110	P120△	2G	
200	SGMPH-02***2*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2T	
400	SGMPH-04***2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2T	
750	SGMPH-08***2*	P120	P120	P120	P120	P120	P120	P130	P130	-	7R	
1500	SGMPH-15***2*	P120	P120	P120	P130	P130	P130	-	-	-	7X	

Σ II Series SGMSH Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
1000	SGMSH-10***2*	P120	P120	P120	P120	P120	P130	-	-	-	1L
1500	SGMSH-15***2*	P120	P120	P120	P130	P130	P130	-	-	-	1L
2000	SGMSH-20***2*	P120	P120	P130	P130	P130	-	-	-	-	1L
3000	SGMSH-30***2*	P130	P130	P130	-	-	-	-	-	-	1T
4000	SGMSH-40***2*	P130	P130	-	-	-	-	-	-	-	1T
5000	SGMSH-50***2*	P130	P130	-	-	-	-	-	-	-	1T

Page of Dimension Table

[Page]

Frame Size	Output Chaft Tupa				Red	luction F	Ratio			
Frame Size	Output Shaft Type	3.7	5	9	11	15	21	33	45	81
P110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34
PIIU	Flange Shaft (F)	53	54	55	56	57	58	59	60	61
P120	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43
P 120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52
P 130	Flange Shaft (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ .

Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked •.

Yaskawa Electric Corporation

Σ Series SGM Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	SGM-A5***2*	P110 _△	P110∆	P110△	P110∆	P110∆	P110△	P110∆	P110∆	P110 _∆	7J
100	SGM-01***2*	P110△	P110 [△]	P110△	P110∆	P110∆	P110∆	P110	P110	P120∆	2D
200	SGM-02***2*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	SGM-04***2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	SGM-08***2*	P120	P120	P120	P120	P120	P120	P130	P130	-	7P

Σ Series SGMP Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of		Reduction Ratio										
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code		
100	SGMP-01***2*	P110△	P110△	P110△	P110∆	P110△	P110△	P110	P110	P120∆	2G		
200	SGMP-02***2*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2T		
400	SGMP-04***2*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2T		
750	SGMP-08***2*	P120	P120	P120	P120	P120	P120	P130	P130	-	7R		
1500	SGMP-15***2*	P120	P120	P120	P130	P130	P130	-	-	-	7X		

Σ Series SGMS Series (Rated speed: 3000 r/min)

	<u> </u>										
Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
1000	SGMS-10A*2*	P120	P120	P120	P120	P120	P130	-	-	-	1L
1500	SGMS-15A**2*	P120	P120	P120	P130	P130	P130	-	-	-	1L
2000	SGMS-20A**2*	P120	P120	P130	P130	P130	-	-	-	-	1L
3000	SGMS-30A**2*	P130	P130	P130	-	-	-	-	-	-	1T
4000	SGMS-40A**2*	P130	P130	-	-	-	-	-	-	-	1T
5000	SGMS-50A**2*	P130	P130	-	-	-	-	-	-	-	1T

Page of Dimension Table

[Page]

										. 0 1
Frame Size	Output Shaft Type				Red	uction F	Ratio			
Frame Size	Output Shart Type	3.7	5	9	11	15	21	33	45	81
P110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34
PIIU	Flange Shaft (F)	53	54	55	56	57	58	59	60	61
P120	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43
P 120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52
P 130	Flange Shaft (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ .

Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked •.

2. Mitsubishi Electric Corporation

HF-KP Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	HF-KP053(B)	P110	P110	P110	P110	P110	P110	P110	P110	P110∑	2D
100	HF-KP13(B)	P110	P110	P110	P110	P110	P110	P110	P110	P120△	2D
200	HF-KP23(B)	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	HF-KP43(B)	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	HF-KP73(B)	P120	P120	P120	P120	P120	P120	P130	P130	-	1G

HF-MP Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	HF-MP053(B)	P110	P110	P110	P110	P110	P110	P110	P110	P110 ²	2D
100	HF-MP13(B)	P110	P110	P110	P110	P110	P110	P110	P110	P120△	2D
200	HF-MP23(B)	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	HF-MP43(B)	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	HF-MP73(B)	P120	P120	P120	P120	P120	P120	P130	P130	-	1G

HF-SP Series (Rated speed: 2000 r/min)

Servo Motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
500	HF-SP52(B)	P120	P120	P120	P120	P120	P120	P130	P130	-	7Z
1000	HF-SP102(B)	P120	P120	P120	P130	P130	P130	-	-	-	7Z
1500	HF-SP152(B)	P120	P120	P130	P130	P130	-	-	-	-	7Z
2000	HF-SP202(B)	P130	P130	P130	-	-	-	-	-	-	0X
3500	HF-SP352(B)	P130	P130	-	-	-	-	-	-	-	0X
5000	HF-SP502(B)	-	-	-	-	-	-	-	-	-	

HF-KFS Series (Rated speed: 3000 r/min)

サーボモータ	サーボモータ形式		減速比								
容量 (W)	ケーハモーダル式	3.7	5	9	11	15	21	33	45	81	フランジコード
50	HC-KFS053(B)	P110△	P110△	P110 _△	P110 _△	P110 _△	P110 _△	P110△	P110△	P110•	2D
100	HC-KFS13(B)	P110△	P110△	P110△	P110△	P110△	P110△	P110	P110	P120△	2D
200	HC-KFS23(B)	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	HC-KFS43(B)	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	HC-KFS73(B)	P120	P120	P120	P120	P120	P120	P130	P130	-	1G

Page of Dimension Table

[Page]

Frame Size	Output Shaft Type				Red	uction F	Ratio			
Frame Size	Output Shart Type	3.7	5	9	11	15	21	33	45	81
P110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34
PIIU	Flange Shaft (F)	53	54	55	56	57	58	59	60	61
P120	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43
P 120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52
F 130	Flange Shaft (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ . Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked ●.

Mitsubishi Electric Corporation

HC-MFS Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	HC-MFS053(B)	P110 [△]	P110 ^e	2D							
100	HC-MFS13(B)	P110 [△]	P110	P110	P120 [△]	2D					
200	HC-MFS23(B)	P110	P110	P110	P110	P110	P110	P110 [®]	P120	P120	2R
400	HC-MFS43(B)	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	HC-MFS73(B)	P120	P120	P120	P120	P120	P120	P130	P130	-	1G

HC-SFS Series (Rated speed: 2000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
500	HC-SFS52(B)	P120	P120	P120	P120	P120	P120	P130	P130	-	7Z
1000	HC-SFS102(B)	P120	P120	P120	P130	P130	P130	-	-	-	7Z
1500	HC-SFS152(B)	P120	P120	P130	P130	P130	-	-	-	-	7Z
2000	HC-SFS202(B)	P130	P130	P130	-	-	-	-	-	-	0X
3500	HC-SFS352(B)	P130	P130	-	-	1	-	-	-	-	0X
5000	HC-SFS502(B)	-	-	-	-	-	-	-	-	-	

HC-UFS Series (Rated speed: 2000 r/min)

Servo Motor	Nomenclature of		_ 1	1	Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
100	HC-UFS13(B)	P110 [△]	P110	P110	P120 [△]	2G					
200	HC-UFS23(B)	P110	P110	P110	P110	P110	P110	P110 ^e	P120	P120 [®]	2T
400	HC-UFS43(B)	P110	P110	P110	P120	P120	P120	P120	P120	P130	2T
750	HC-UFS73(B)	P120	P120	P120	P120	P120	P120	P130	P130	-	7X

Page of Dimension Table

Pag	e

Frame Size	Output Shaft Type				Red	uction F	Ratio			
Frame Size	Output Shall Type	3.7	5	9	11	15	21	33	45	81
D110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34
P110	Flange Shaft (F)	53	54	55	56	57	58	59	60	61
P120	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43
P 120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52
F 130	Flange Shaft (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ . Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked •.

3. Matsushita Electric Industrial Co., Ltd.

MSMA Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction R	atio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	MSMA5A**1A	P110∆	P110∆	P110 _△	P110 _△	P110∆	P110△	P110△	P110△	P110 _∆	2C
100	MSMA01**1A	P110∆	P110∆	P110∆	P110∆	P110∆	P110∆	P110	P110	P120∆	2C
200	MSMA02**1A	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2L
400	MSMA04**1A	P110	P110	P110	P120	P120	P120	P120	P120	P130	2P
750	MSMA08**1A	P120	P120	P120	P120	P120	P120	P130	P130	-	7S
1000	MSMA10**1A	P120	P120	P120	P120	P120	P130	-	-	-	7V
1500	MSMA15**1A	P120	P120	P120	P130	P130	P130	-	-	-	7B
2000	MSMA20**1A	P120	P120	P130	P130	P130	-	-	-	-	7B
2500	MSMA25**1A	P120	P120	P130		-	-	-	-	-	7B
3000	MSMA30**1A	P130	P130	P130		-	-	-	-	-	1S
3500	MSMA35**1A	P130	P130	P130		-	-	-	-	-	1S
4000	MSMA40**1A	P130	P130	-		-	-	-	-	-	7Z
4500	MSMA45**1A	P130	P130	-		-	-	-	-	-	7Z
5000	MSMA50**1A	P130	P130	-		-	-	-	-	-	7Z

MQMA Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
100	MQMA022A1A	P110△	P110△	P110△	P110∆	P110∆	P110△	P110	P110	P120△	2F
200	MQMA032A1A	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	8A
400	MQMA042A1A	P110	P110	P110	P120	P120	P120	P120	P120	P130	8B

Page of Dimension Table

[Page]

-														
Frame Size	Output Shaft Type		Reduction Ratio											
Frame Size	Output Shart Type	3.7	5	9	11	15	21	33	45	81				
D110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34				
P110	Flange Shaft (F)	53	54	55	56	57	58	59	60	61				
D420	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43				
P120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70				
D120	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52				
P130	Flange Shaft (F)	71	72	73	74	75	76	77	78	79				

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ . Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked ●.

4. Sanyo Denki Co., Ltd.

P3 Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	P30B04005H***	P110 _△	P110∆	P110△	P110 _△	P110∆	P110∆	P110∆	P110∆	P110 _∆	2D
100	P30B04010H***	P110∆	P110∆	P110∆	P110 _△	P110∆	P110∆	P110	P110	P120∆	2D
200	P30B06020H***	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	P30B06040H***	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	P30B08075H***	P120	P120	P120	P120	P120	P120	P130	P130	-	7P

P5 Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction R	atio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	P50B05005H***	P110△	P110∆	P110∆	P110△	P110△	P110∆	P110△	P110∆	P110 ¹	2E
100	P50B05010H***	P110 _△	P110△	P110∆	P110△	P110△	P110∆	P110	P110	P120∆	2E
200	P50B05020H***	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2K
200	P50B07020H***	P110	P110	P110	P110	P110	P110	P110•	P120	P130	8B
300	P50B07030H***	P110	P110	P110	P110	P110	P120	P120	P120	P130	8B
400	P50B07040H***	P110	P110	P110	P120	P120	P120	P120	P120	P130	8B
500	P50B08050H***	P110	P110	P120	P120	P120	P120	P130	P130	-	8E
750	P50B08075H***	P120	P120	P120	P120	P120	P120	P130	P130	-	8E
1000	P50B08100H***	P120	P120	P120	P120	P120	P130	-	-	-	8E

Q1 Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Red	uction R	atio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	Q1AA04005***	P110△	P110∆	P110∆	P110∆	P110△	P110△	P110△	P110∆	P110 _∆	2D
100	Q1AA04010***	P110∆	P110∆	P110∆	P110∆	P110∆	P110△	P110	P110	P120∆	2D
200	Q1AA06020***	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	Q1AA06040***	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	Q1AA07075***	P120	P120	P120	P120	P120	P120	P130	P130	-	0U
1000	Q1AA10100***	P120	P120	P120	P120	P120	P130	-	-	-	0W
1000	Q1AA12100***	P120	P120	P120	P120	P120	P130	-	-	-	0Y
1500	Q1AA10150***	P120	P120	P120	P130	P130	P130	-	-	-	0W
2000	Q1AA10200***	P120	P120	P130	P130	P130	-	-	-	-	0W
2000	Q1AA12200***	P120	P120	P130	P130	P130	-	-	-	-	0Y
2500	Q1AA10250***	P120	P120	P130	-	-	-		-	-	0W
3000	Q1AA12300***	P130	P130	P130	-	-	-	-	-	-	1T
3000	Q1AA13300***	P130	P130	P130	-	-	-	-	-	-	1T
4000	Q1AA13400***	P130	P130	-	-	-	-	-	-	-	1T
5000	Q1AA13500***	P130	P130	-	-	-	-	-	-	-	1T

Page of Dimension Table

[Page]	
--------	--

From a Ciza	Output Chaft Tupa	Reduction Ratio												
Frame Size	Output Shaft Type	3.7	5	9	11	15	21	33	45	81				
P110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34				
PIIO	Flange Shaft (F)	53	54	55	56	57	58	59	60	61				
D120	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43				
P120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70				
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52				
F 130	Flange Shaft (F)	71	72	73	74	75	76	77	78	79				

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ . Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked .

5. Fuji Electric FA Components & Systems

GYS Motor (Rated speed: 3000 r/min)

FALDIC- α , β Series Cubic Type FALDIC-W Low Inertia Series

Servo Motor	Nomenclature of				Red	uction R	atio				Motor
Capacity [W]	Servo Motor	3.7	5	9	11	15	21	33	45	81	Flange Code
50	GYS500DC*-**B-*	P110△	P110△	P110∆	P110∆	P110△	P110∆	P110∆	P110△	P110 _∆	7J
100	GYS101DC*-**B-*	P110∆	P110 [△]	P110∆	P110∆	P110∆	P110∆	P110	P110	P120△	2D
200	GYS201DC*-**B-*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	GYS401DC*-**B-*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	GYS751DC*-**B-*	P120	P120	P120	P120	P120	P120	P130	P130	-	7P
1000	GYS102DC*-**B-*	P120	P120	P120	P120	P120	P130	-	-	-	7Y
1500	GYS152DC*-**B-*	P120	P120	P120	P130	P130	P130	-	-	-	7Y
2000	GYS202DC*-**B-*	P120	P120	P130	P130	P130	-	-	-	-	7Y
3000	GYS302DC*-**B-*	P130	P130	P130	-	-	-	-	-	-	1T
4000	GYS402DC*-**B-*	P130	P130	-	-	-	-	-	-	-	1T
5000	GYS502DC*-**B-*	P130	P130	-	-	-	-	-	-	-	1T

GYS Motor (Rated speed: 3000 r/min)

FALDIC-α, β Series Slim Type

71 21											
Servo Motor	Nomenclature of				Red	uction R	Ratio				Motor
Capacity [W]	Servo Motor	3.7 5 9 11 15 21 33 45 81							Flange Code		
100	GYC101DC*-**B-*	P110△	P110△	P110△	P110∆	P110△	P110∆	P110	P110	P120∆	2G
200	GYC201DC*-**B-*	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2T
400	GYC401DC*-**B-*	P110	P110	P110	P120	P120	P120	P120	P120	P130	2T
750	GYC751DC*-**B-*	P120	P120	P120	P120	P120	P120	P130	P130	-	7A
1000	GYC102DC*-**B-*	P120	P120	P120	P120	P120	P130	-	-	-	7Z
1500	GYC152DC*-**B-*	P120	P120	P120	P130	P130	P130	-	-	-	7Z
2000	GYC202DC*-**B-*	P120	P120	P130	P130	P130	-	-	-	-	7Z

Page of Dimension Table

[Page]

. 5 -										r . 0 . 1
Frame Size	Output Shaft Type				Red	luction F	Ratio			
Frame Size	Output Shart Type	3.7	5	9	11	15	21	33	45	81
P110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34
	Flange Shaft (F)	53	54	55	56	57	58	59	60	61
D400	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43
P120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52
	Flange Shaft (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ .

Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked ●.

6. FANUC Ltd.

β is Series (Rated speed: 4000-2000 r/min) Applies to rated speed torque.

Servo motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor () indicates reted spped	3.7	5	9	11	15	21	33	45	81	Flange Code
50	β 0.2/5000is (4000)	P110△	P110△	P110△	P110∆	P110∆	P110△	P110∆	P110△	P110∆	2D
100	β 0.3/5000is (4000)	P110△	P110 [△]	P110△	P110∆	P110∆	P110 [△]	P110 [△]	P110 [△]	P110 _∆	2D
130	β 0.4/5000is (4000)	P110	P110	P110	P110	P110	P110	P110	P110	P110•	2H
200	β 0.5/5000is (4000)	P110	P110	P110	P110	P110	P110•	P110•	P110•	P110•	2H
400	β 1/5000is (4000)	P110	P110	P110	P120	P120	P120	P120•	P120•	-	2R
500	β 2/4000is (4000)	P110	P110	P120	P120	P120	P120	P120•	P120•	-	2J
750	β 4/4000is (3000)	P120	P120	P120	P120	P120	P120•	P130	-	-	0V
1200	β 8/3000is (2000)	P120	P120	P130	P130	P130	P130	-	-	-	7X
1800	β 12/3000is (2000)	P120	P120	P130	P130•	P130•	-	-	-	-	7Z
2500	β 22/2000is (2000)	P130	P130	-	-	-	-	-	-	-	0X

α is Series (Rated speed: 4000-2000 r/min)

Servo motor	Nomenclature of				Red	uction F	Ratio				Motor
Capacity [W]	Servo Motor () indicates reted spped	3.7	5	9	11	15	21	33	45	81	Flange Code
750	α 2/5000is (4000)	P110	P110	P120	P120	P120	P120	P130	P130	P130•	2J
1000	α 4/5000is (4000)	P120	P120	P120	P120	P120	P120	P130	P130	-	0V
2500	α 8/4000is (4000)	P120	P120	P130	-	-	-	-	-	-	7X
2700	α 12/4000is (3000)	P130	P130	-	-	-	-	-	-	-	7Z
4500	α 22/4000is (3000)	P130	P130	-	-	-	-	-	-	-	0X
5500	α 30/4000is (3000)	-	-	-	-	-	-	-	-	-	0X
5500	α 40/4000is (3000)	-	-	-	-	-	-	-	-	-	0X
5000	α 50/3000is (2000)	-	-	-	-	-	-	-	-	-	0X

Page of Dimension Table

[Page]

Frame Size	Output Shaft Type				Red	luction F	Ratio			
Frame Size	Output Shart Type	3.7	5	9	11	15	21	33	45	81
P110	Solid Shaft (N, W)	26	27	28	29	30	31	32	33	34
PIIU	Flange Shaft (F)	53	54	55	56	57	58	59	60	61
D120	Solid Shaft (N, W)	35	36	37	38	39	40	41	42	43
P120	Flange Shaft (F)	62	63	64	65	66	67	68	69	70
P130	Solid Shaft (N, W)	44	45	46	47	48	49	50	51	52
	Flange Shaft (F)	71	72	73	74	75	76	77	78	79

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ .

Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked .

7. KEYENCE

MV Series (Rated speed: 3000 r/min)

Servo Motor	Nomenclature of				Motor						
Capacity [W]	Servo Motor	3.7 5 9 11 15 21 33 45 81							Flange Code		
50	MV-M05(MV-B05)	P110△	P110△	P110△	P110△	P110△	P110△	P110△	P110△	P110 ²	2D
100	MV-M10(MV-B10)	P110△	P110△	P110△	P110△	P110△	P110△	P110	P110	P120△	2D
200	MV-M20(MV-B20)	P110	P110	P110	P110	P110	P110	P110•	P120	P120•	2R
400	MV-M40(MV-B40)	P110	P110	P110	P120	P120	P120	P120	P120	P130	2R
750	MV-M75(MV-B75)	P120	P120	P120	P120	P120	P120	P130	P130	-	0U

^{*}Check the value of no load running torque in Selection Table 1 (page 8) when using the combinations marked with Δ . Consult us for larger no load running torque is larger. Specialized units may be available.

^{*}Refer to Selection Table 3 (on page 20) for allowable peak torque at startup for combinations marked .

Selection Table 3 (Rating Table)

Table1-1 Rating Table (SI Unit))

		<u> </u>	,	,							
Input Spe	eed (r/min)	6000	5000	4000	3000	2000	1500	1000	Allowable Peak Torque at	Maximum Torque at	Allowable Maximum
Frame	Reduction			Ra	ited Torqu	e *1			Startup and Stop	Emergency	Input Speed
Size	Ratio				Nm				Nm	Nm	r/min
	3.7(3/11)	8.0	8.5	9.0	10.0	11.0	12.0	13.5	40.0		
	5	8.5	9.0	9.5	10.5	12.0	13.0	14.5	45.0		
	9	9.5	10.0	10.5	11.5	11.5	11.5	11.5	35.0		
	11	12.5	13.0	14.0	15.5	17.5	18.0	18.5			
P110	15	12.5	13.5	14.0	15.5	17.5	19.0	21.5		60.0	6000
	21	14.0	15.0	16.0	17.5	19.5	21.5	22.5	45.0		
	33	18.0	18.0	18.0	18.5	18.5	18.5	18.5			
	45	18.0	19.0	20.0	22.0	22.5	22.5	22.5			
	81	11.5	11.5	11.5	11.5	11.5	11.5	11.5	35.0		
	3.7(3/11)	34.0	36.0	38.5	42.0	47.5	52.0	58.5	140.0	175.0	
	5	36.0	38.0	41.0	44.5	50.5	55.0	62.0	145.0	240.0	
	9	41.0	43.0	43.0	43.0	43.5	43.5	43.5	140.0	200.0	
	11	27.5	29.0	31.0	34.0	38.5	42.0	47.5	135.0	180.0	
P120	15	37.5	40.0	42.5	46.5	52.5	57.5	64.5	185.0	250.0	6000
	21	40.0	42.5	45.5	49.5	56.0	61.0	69.0	190.0	250.0	
	33	34.5	36.5	39.0	40.5	40.5	40.5	40.5	135.0	180.0	
	45	47.0	49.5	53.0	55.0	55.0	55.0	55.5	180.0	250.0	
	81	43.5	43.5	43.5	43.5	43.5	43.5	43.5	140.0	200.0	
	3.7(3/11)		70.0	75.0	82.0	92.5	101.0	114.0	290.0	445.0	
	5		74.0	79.5	86.5	97.5	106.5	120.5	325.0	500.0	
	9		83.5	89.5	97.5	100.0	100.0	100.5	330.0	500.0	
	11		56.5	60.5	66.0	74.5	81.0	92.0	320.0	395.0	
P130	15	-	77.0	82.5	90.0	101.5	111.0	125.0	380.0	500.0	5000
	21		82.0	88.0	96.0	105.5	118.0	133.5	3.5	500.0	
	33		70.5	75.5	82.0	93.0	101.0	114.5	355.0	395.0	
	45		96.0	103.0	112.0	126.5	138.0	153.0	380.0	500.0	
	81		100.5	100.5	101.0	101.0	101.0	101.0	330.0	500.0	

Table 1-2 Rating Table (Engineering Unit)

Input	Speed nin)	6000	5000	4000	3000	2000	1500	1000	Allowable Peak Torque at	Maximum Torque at	Allowable Maximum
Frame	Reduction			Ra	ited Torqu	e *1			Startup and Stop	Emergency	Input Speed
Size	Ratio				kgf⋅m				kgf⋅m	kgf⋅m	rpm
	3.7	0.82	0.87	0.92	1.02	1.12	1.22	1.38	4.08		
	5	0.87	0.92	0.97	1.07	1.22	1.33	1.48	4.59		
	9	0.97	1.02	1.07	1.17	1.17	1.17	1.17	3.57		
	11	1.27	1.33	1.43	1.58	1.78	1.83	1.89			
P110	15	1.27	1.38	1.43	1.58	1.78	1.94	2.19		6.12	6000
	21	1.43	1.53	1.63	1.78	1.99	2.19	2.29	4.59		
	33	1.83	1.83	1.83	1.89	1.89	1.89	1.89			
	45	1.83	1.94	2.04	2.24	2.29	2.29	2.29			
	81	1.17	1.17	1.17	1.17	1.17	1.17	1.17	3.57		
	3.7	3.47	3.67	3.92	4.28	4.84	5.30	5.96	14.3	17.8	
	5	3.67	3.87	4.18	4.54	5.15	5.61	6.32	14.8	24.5	
	9	4.18	4.38	4.38	4.38	4.43	4.43	4.43	14.3	20.4	
	11	2.80	2.96	3.16	3.47	3.92	4.28	4.84	13.8	18.3	
P120	15	3.82	4.08	4.33	4.74	5.35	5.86	6.57	18.9	25.5	6000
	21	4.08	4.33	4.64	5.05	5.71	6.22	7.03	19.4	25.5	
	33	3.52	3.72	3.98	4.13	4.13	4.13	4.13	13.8	18.3	
	45	4.79	5.05	5.40	5.61	5.61	5.61	5.66	18.3	25.5	
	81	4.43	4.43	4.43	4.43	4.43	4.43	4.43	14.3	20.4	
	3.7		7.14	7.65	8.36	9.43	10.30	11.6	29.6	45.4	
	5		7.54	8.10	8.82	9.94	10.86	12.3	33.1	51.0	
	9		8.51	9.12	9.94	10.2	10.2	10.2	33.6	31.0	
	11		5.76	6.17	6.73	7.59	8.26	9.38	32.6	40.3	
P130	15	-	7.85	8.41	9.17	10.35	11.3	12.7	38.7	51.0	5000
	21		8.36	8.97	9.79	10.75	12.0	13.6		31.0	
	33		7.19	7.70	8.36	9.48	10.3	11.7	36.2	40.3	
	45		9.79	10.5	11.4	12.9	14.1	15.6	38.7	51.0	
	81		10.2	10.2	10.3	10.3	10.3	10.3	33.6	31.0	

Selection Table 3 (Rating Table)

Table 1-3 Allowable Operation Cycle

Input	Speed	60		50		40	00	30	00	20	00	15	00	10	00
(r/m	nin)														
Frame Size	Reduction Ratio	Allowable continuous operation period	Allowable % ED	Allowable continuous operation period	Allowable % ED	Allowable continuous operation period	Allowable % ED	Allowable continuous operation period	Allowable % ED	Allowable continuous operation period	Allowable % ED	Allowable continuous operation period	Allowable % ED	Allowable continuous operation period	Allowable % ED
Oize	rtatio	min	%	min	%	min	%	min	%	min	%	min	%	min	%
	3.7(3/11)		30		50		60		70		80				
	5		40		60		70		80						
	9		50		70		80		90						
	11														
P110	15	5	40	10	60	10	70	20	80	20	90	30	90	30	90
	21							1		_					
	33 45		50		70		80		90						
	81		50		70		00		90						
	3.7(3/11)		20		20		30		40		60		70		70
	5		30	<u>.</u>	50		60		70	_	80	_	70	_	7.0
	9		40	_	60		70		80	_	- 00	_			
	11			_						_					
P120	15	5	30	10	50	10	60	20	70	20		30	90	30	00
	21	1									90		90		90
	33								80						
	45		40		60		70			_					
	81								90						
	3.7(3/11)			5	20	5	30	10	40	15	60	20	70	30	80
	5				30		50		60		70		80		
	9				40		60		70	-	90	-			
P130	11 15	_	_		20		F0		60		70				
F 130	15 21	-	_	10	30	10	50	20	60	20	70	30	90	30	90
	33												30		
	45	1			40		60		70		90				
	81	1													

^{*1:} Rated torque is the allowable value of the average load torque at the output shaft. The rated torque for the input speed of 1000 r/min or less is the same as the rated torque of 1000 r/min.

^{*2:} Maximum allowable torque when startup and stop during operation cycle.

^{*3:} Maximum allowable value of the shock torque at emergency stop or external shock torque. Should be less than 1,000 times in one lifetime.

^{*4:} Maximum allowable input speed when not under constant operation condition.

^{*5:} Allowable constant operation hours for intermittent operation condition (Consult us when exceeding or when continuously operating).

^{*6:} Some values are not allowable depending on the input shaft diameter. Make sure to follow the method of motor attachment in page 88.

Selection Table 3 (Allowable External Rating)

Table 2-1 External Load (SI Unit)

_		External Load (of Offic)														
Motor (r/n	Speed	60	00	50	00	40	00	30	00	20	00	15	00	10	00	Allowable
		Radial	Axial	Radial	Axial	Radial	Axial	Radial	Axial	Radial	Axial	Radial	Axial	Radial	Axial	
Frame	Reduction		Load	Load	Load	Moment										
Size	Ratio	*1	* 2	*1	* 2	*1	* 2	*1	* 2	*1	* 2	*1	* 2	*1	* 2	
0.20		N	N	N	N	N	N	N	N	N	N	N	Ν	N	N	Nm
	3.7(3/11)	215	425	230	450	250	485	275	535	315	610	345	670	395	770	
	5	240	470	255	500	275	540	305	595	350	680	385	750	440	860	
	9	295	575	315	610	335	655	370	725	425	830	470	910	535	1045	
	11	310	615	330	650	355	700	395	775	450	885	495	975	570	1115	
P110	15	350	680	370	725	400	780	440	860	505	985	555	1080	635	1240	70
	21	390	760	415	810	450	870	495	960	565	1100	620	1210	715	1385	
	33	455	885	485	940	520	1015	575	1115	655	1280	725	1405	830	1610	
	45	505	985	535	1045	580	1125	635	1240	730	1420	805	1560	920	1785	
	81	615	1190	655	1265	705	1360	775	1500	890	1715	980	1885	1050	2160	
	3.7(3/11)	670	1245	710	1320	765	1425	845	1570	965	1795	1065	1975	1215	2260	
	5	745	1385	790	1475	855	1590	940	1750	1075	2000	1185	2205	1355	2525	
	9	905	1690	965	1795	1040	1935	1145	2130	1310	2435	1440	2680	1650	3070	
	11	965	1800	1025	1915	1105	2060	1220	2270	1395	2595	1535	2860	1760	3270	
P120	15	1075	2000	1145	2130	1230	2295	1355	2525	1550	2890	1710	3180	1955	3640	300
	21	1205	2240	1280	2380	1380	2565	1515	2825	1735	3235	1910	3560	2190	4075	
	33	1400	2605	1485	2770	1600	2985	1765	3285	2020	3760	2225	4140	2545	4735	
	45	1550	2890	1650	3070	1775	3305	1955	3640	2240	4170	2465	4585	2825	4800	
	81	1890	3515	2005	3735	2165	4025	2380	4430	2725	4800	2900	4800	2900	4800	
	3.7(3/11)	-	-	955	2015	1030	2170	1135	2390	1295	2735	1430	3010	1635	3445	
	5	-	-	1060	2235	1140	2405	1260	2650	1440	3030	1585	3335	1815	3820	
	9	-	-	1290	2715	1390	2925	1530	3220	1750	3685	1930	4055	2210	4640	
	11	-	-	1375	2910	1480	3135	1630	3450	1865	3945	2050	4345	2350	4975	
P130	15	-	-	1530	3230	1650	3480	1815	3830	2075	4380	2285	4825	2620	5520	620
	21	-	-	1710	3610	1845	3885	2030	4280	2325	4895	2560	5390	2930	6170	
	33	-	-	1990	4200	2145	4525	2360	4980	2705	5700	2975	6270	3405	7180	
	45	-	-	2210	4655	2380	5015	2620	5520	3000	6315	3300	6955	3780	7960	
	81	-	-	2685	5665	2895	6105	3185	6720	3645	7690	4015	8465	4500	9400	

^{*1:} Radial load is the value applied to the middle of the output shaft (at axial load).

^{*2:} Axial load is the value applied to the center of the output shaft (at radial load).

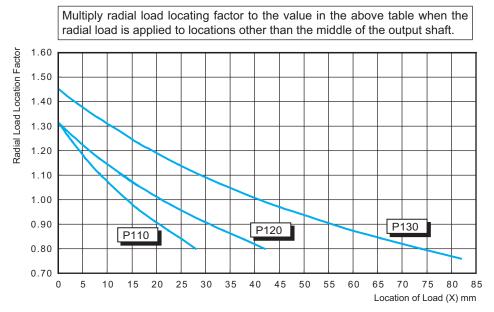


Fig. 2 Radial Load Location Factor

Selection Table 3 (Allowable External Rating)

Table 2-2 External Load (SI Engineering)

	Speed	60	00	50	00	40	00	30	00	20	00	15	00	10	00	
r/n	nin															Allowable
	D 1 "	Radial	Axial	Radial	Axial	Radial		Momen								
Frame		Load	Load													
Size	Ratio	*1	* 2	*1	* 2	*1	* 2	*1	* 2	*1	* 2	*1	* 2	*1	* 2	
		kgf	kgf	kgfm												
	3.7(3/11)	21.9	43.3	23.4	45.9	25.5	49.4	28.0	54.5	32.1	62.2	35.2	68.3	40.3	78.5	
	5	24.5	47.9	26.0	51.0	28.0	55.0	31.1	60.7	35.7	69.3	39.2	76.5	44.9	87.7	
	9	30.1	58.6	32.1	62.2	34.1	66.8	37.7	73.9	43.3	84.6	47.9	92.8	54.5	106.5	
	11	31.6	62.7	33.6	66.3	36.2	71.4	40.3	79.0	45.9	90.2	50.5	99.4	58.1	113.7	
P110	15	35.7	69.3	37.7	73.9	40.8	79.5	44.9	87.7	51.5	100.4	56.6	110.1	64.7	126.4	7.13
	21	39.8	77.5	42.3	82.6	45.9	88.7	50.5	97.9	57.6	112.1	63.2	123.3	72.9	141.2	
	33	46.4	90.2	49.4	95.8	53.0	103.5	58.6	113.7	66.8	130.5	73.9	143.2	84.6	164.1	
	45	51.5	100.4	54.5	106.5	59.1	114.7	64.7	126.4	74.4	144.8	82.1	159.0	93.8	182.0	
	81	62.7	121.3	66.8	129.0	71.9	138.6	79.0	152.9	90.7	174.8	99.9	192.2	107.0	220.2	
	3.7(3/11)	68.3	126.9	72.4	134.6	78.0	145.3	86.1	160.0	98.4	183.0	108.6	201.3	123.9	230.4	
	5	75.9	141.2	80.5	150.4	87.2	162.1	95.8	178.4	109.6	203.9	120.8	224.8	138.1	257.4	
	9	92.3	172.3	98.4	183.0	106.0	197.2	116.7	217.1	133.5	248.2	146.8	273.2	168.2	312.9	
	11	98.4	183.5	104.5	195.2	112.6	210.0	124.4	231.4	142.2	264.5	156.5	291.5	179.4	333.3	
P120	15	109.6	203.9	116.7	217.1	125.4	233.9	138.1	257.4	158.0	294.6	174.3	324.2	199.3	371.0	30.6
	21	122.8	228.3	130.5	242.6	140.7	261.5	154.4	288.0	176.9	329.8	194.7	362.9	223.2	415.4	
	33	142.7	265.5	151.4	282.4	163.1	304.3	179.9	334.9	205.9	383.3	226.8	422.0	259.4	482.7	
	45	158.0	294.6	168.2	312.9	180.9	336.9	199.3	371.0	228.3	425.1	251.3	467.4	288.0	489.3	
	81	192.7	358.3	204.4	380.7	220.7	410.3	242.6	451.6	277.8	489.3	295.6	489.3	295.6	489.3	
	3.7(3/11)	-	-	97.3	205.4	105.0	221.2	115.7	243.6	132.0	278.8	145.8	306.8	166.7	351.2	
	5	-	-	108.1	227.8	116.2	245.2	128.4	270.1	146.8	308.9	161.6	340.0	185.0	389.4	
	9	-	-	131.5	276.8	141.7	298.2	156.0	328.2	178.4	375.6	196.7	413.4	225.3	473.0	
	11	-	-	140.2	296.6	150.9	319.6	166.2	351.7	190.1	402.1	209.0	442.9	239.6	507.1	1
P130	15	-	-	156.0	329.3	168.2	354.7	185.0	390.4	211.5	446.5	232.9	491.8	267.1	562.7	63.2
	21	-	-	174.3	368.0	188.1	396.0	206.9	436.3	237.0	499.0	261.0	549.4	298.7	629.0	
	33	-	-	202.9	428.1	218.7	461.3	240.6	507.6	275.7	581.0	303.3	639.1	347.1	731.9	1
	45	-	-	225.3	474.5	242.6	511.2	267.1	562.7	305.8	643.7	336.4	709.0	385.3	811.4	
	81	-	-	273.7	577.5	295.1	622.3	324.7	685.0	371.6	783.9	409.3	862.9	458.7	958.2	

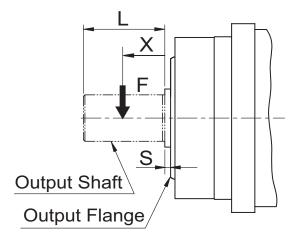
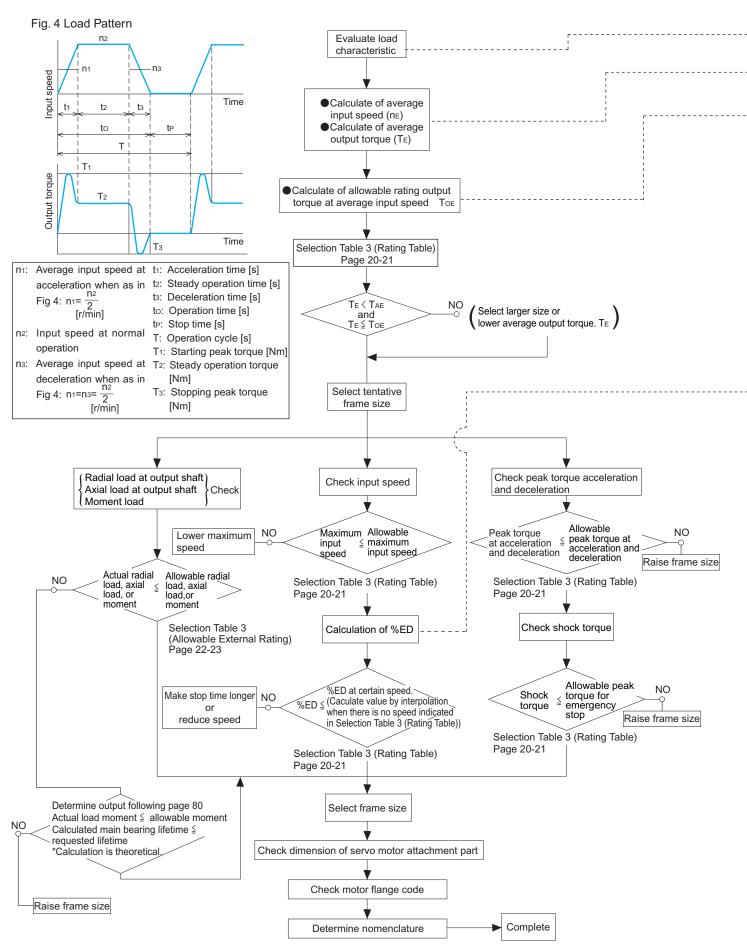



Fig. 3

Selection Procedure

Flow Chart and Formula of Selection

Calculation in Load Condition of Fig. 4

- Average input speed
$$n_E = \frac{t_1 \cdot n_1 + t_2 \cdot n_2 + t_3 \cdot n_3 \cdots t_n \cdot n_n}{t_0}$$
 Formula 1 $n = 4, 5, 6 \cdots$

- Allowable rating output ToE =
$$\left(\frac{3000}{\text{nE}}\right)^{0.3}$$
 x To · · · · Formula 3

torque at average To: Rated output torque at input

speed 3000 r/min

input speed

- %ED

% ED=
$$\frac{\text{to}}{\text{T}}$$
 x 100 · · · · · Formula 4

Selection Table 3 (Rating Table) Page 20-21

%ED Calculation at Average Input Speed

Interpolation method

%ED(x)=
$$\frac{y_i(x-x_{i+1})-y_{i+1}(x-x_i)}{x_i-x_{i+1}}$$

%ED(x): Calculated %ED

x: Average input speed

xi: Speed lower than the average input speed on the rating table

vi: Allowable %ED at the above speed

x_{i+1}: Speed higher than the average input speed on the rating table

y_{i+1}: Allowable %ED at the above speed

Table 3 Fs2 Load factor

	Loading condition	Fs ₂
L	Iniform load	1
Ν	Noderate shock	1-1.2
Н	leavy shock	1.4-1.6

0.2s

Example of Selection

Evaluate ANFX-P120F-7ZLD-15 for following specification.

Specification: TA: Acceleration peak torque 100 Nm ta: Acceleration time

TR: Normal running torque 30 Nm tr: Normal running time 5.0s T_B: Peak torque at breaking 80 Nm t_B: Deceleration time 0.2s Shock torque: 2000 Nm tp: Total running time 3.0s

(700 times during overall lifetime)

to: Standstill time 5.4s na: Average input speed during acceleration 1500 r/min T: Single cycle time 8.4s

nR: Input speed with normal running 3000 r/min

n_B: Average input speed during deceleration 1500 r/min

Application is assumed to have almost no load.

Calculation: Average input
$$nE = \frac{0.2 \times 1500 + 5.0 \times 3000 + 0.2 \times 1500}{5.4} = 2889 [r/min]$$

Average output
$$T_E = \left(\frac{0.2 \times 1500 \times 100^{10/3} + 5.0 \times 3000 \times 30^{10/3} + 0.2 \times 1500 \times 80^{10/3}}{5.4 \times 2889}\right)^{0.3} \times 1 = 39.6 \text{ [Nm]}$$

Cheak Average output torque

%ED = $\frac{5.4}{8.4}$ x 100= 64.3% Calculate %ED

20 [min]= 1200 [s] > 5.4 [s]·····OK Cheak Average output torque

$$\frac{90(2889 - 3000) - 70(2889 - 2000)}{2000 - 3000} = 72$$

- Evaluate maximum input speed 3000 [r/min] < 6000 [r/min]

- Evaluate peak torque at acceleration and deceleration 100 [Nm] < 185 [Nm]

- Evaluate shock torque 200 [Nm] < 250 [Nm] (1000 times during entire lifetime)

(Rating Table) Page 20-21

Selection Table

ANFX-P120F-7ZLD-15 is selected by the process above.

Dimension Drawings

Frame Size: P110 Reduction Ratio: 1/3.7 Solid Shaft M x Hexagon socket head bolt **Output Shaft Keyless** 28 23 Rubber cap $4 - \phi 5.5$ 6. 8 \$ 16 h7 (0.018) φ 56 h7 (-0.030) LB H7 80<u>'y</u> 80.K □60 LG Adaptor plate shape: A LR min LR max M x Hexagon socket head bolt Rubber cap 28 4-LZ Output Shaft with Key 22 φLC <u>M4</u> Ø LB H7 φ 16h7(-0.018) LG[°] Adaptor plate shape: B LR min Keyless: N LR max With key: W Nomenclature ANFX-P110 Output shaft type Motor flange code Backlash - Reduction ratio (3.7) 3 min: L3 15 min: LD Dimension Motor Motor *1 Adaptor plate LR LG flange flange LF [kg] LD LA LB LC LE S M LZ code code Shape max min shape 2C 5 7 Useful thread length 46.5 МЗ 2C 45 30 60 11 М3 19 8 0.9 7J 107.5 30 60 5 11 9 Useful thread length 46.5 М3 0.9 7J 46 В M4 19 6 5 9 2D 2D 46 30 60 11 Useful thread length M4 46.5 19 8 M3 0.9 4 8.5 8 Useful thread length 2E 2E 60 50 80 60 M4 44 16.5 8 МЗ 0.9 4 2K 60 50 80 60 6 8 Useful thread length 16.5 0.9 2K M4 44 11 M4 2F 2F 70 50 80 60 4 8.5 10 Through hole M4 44 16.5 8 М3 0.9 2L 0.9 70 50 80 60 4 6 10 Through hole M4 44 16.5 11 M4 2L 2P 70 50 80 60 4 6 10 Through hole M4 16.5 14 M4 0.9 2P 44 2G 70 50 80 60 4 8.5 10 Through hole M5 44 16.5 8 М3 0.9 2G 2H 70 4 6 2H 50 80 60 10 Through hole М5 44 16.5 9 M4 0.9 Α 2R 70 50 80 60 4 6 10 Through hole М5 44 16.5 14 M4 0.9 2R 8A 90 70 105 80 6 7.5 12 Through hole M5 45.5 18 11 M4 1.0 8A 8B 106.5 90 70 105 80 6 7.5 12 45.5 14 1.0 8B Through hole M5 18 M4 2T 90 70 105 80 6 7.5 12 Through hole M6 45.5 18 14 M4 1.0 2T 2J 100 80 120 90 5 12 23.5 2J 112 13 Through hole M6 51 10 M4 1.1

9.5 Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

6

12

Through hole

1.3

22

41

M6

16

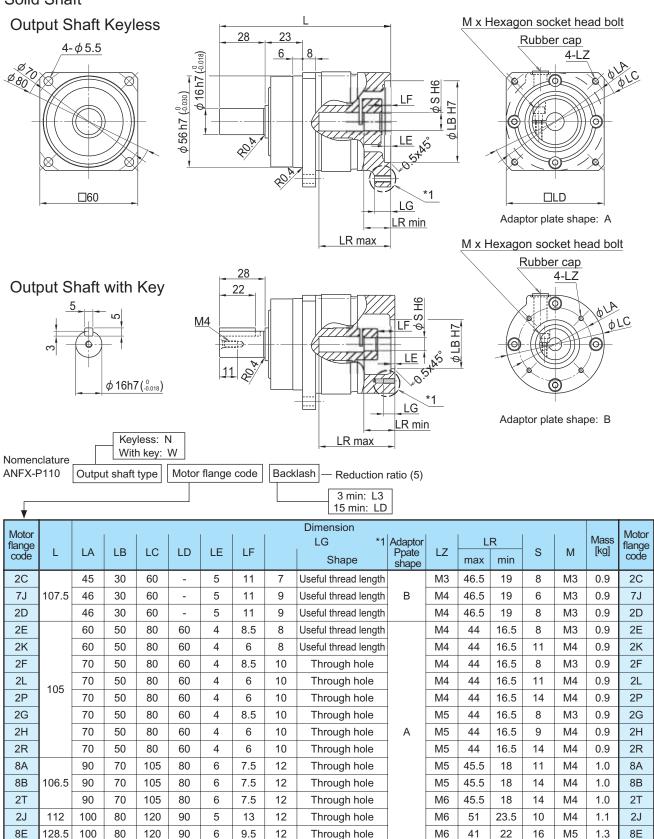
M5

8E

8E

128.5

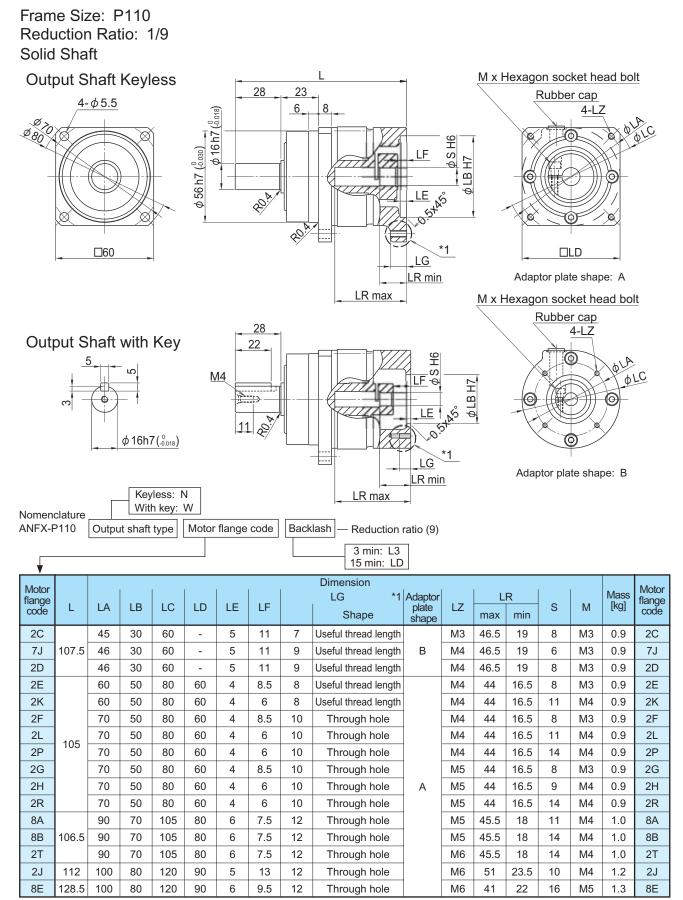

100


80

120

90

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.



Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Dimension Drawings

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P110 Reduction Ratio: 1/11

Solid Shaft

2R

8A

8B

2T

70

90

90

90

124.5

50

70

70

70

80

105

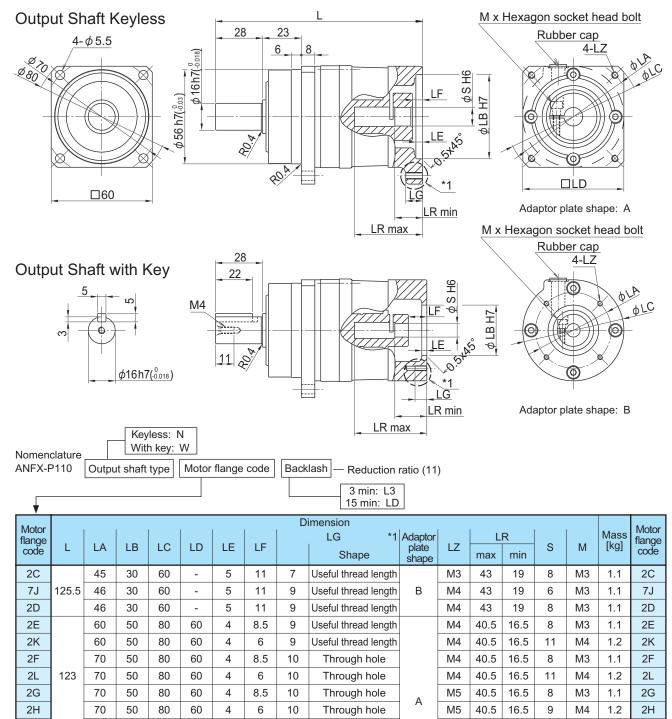
105

105

60

80

80


80

4

6

6

6

7.5 Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

6

7.5

7.5

10

12

12

12

Through hole

Through hole

Through hole

Through hole

M5

М5

M5

40.5

42

42

42

16.5

18

18

18

14

11

14

14

M4

M4

M4

M4

1.2

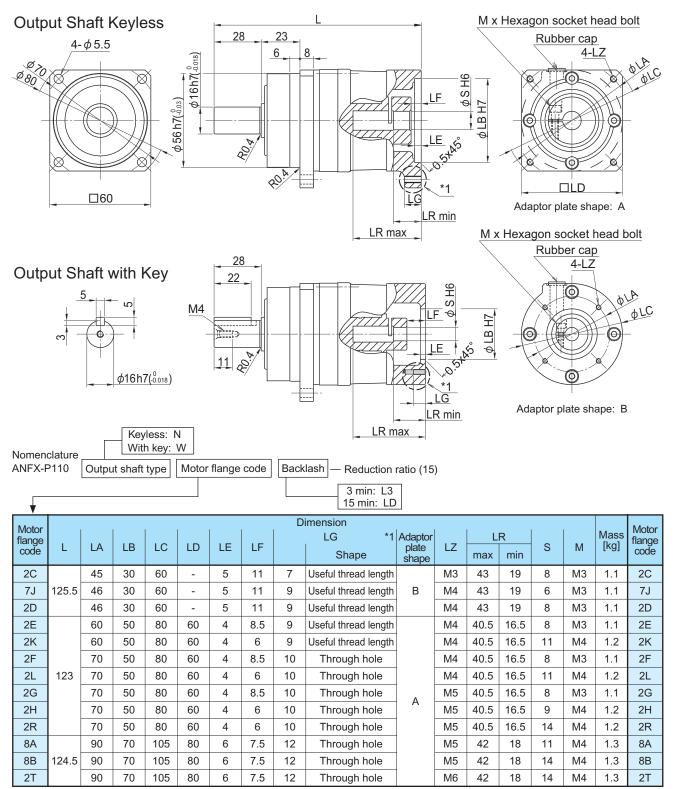
1.3

1.3

1.3

2R

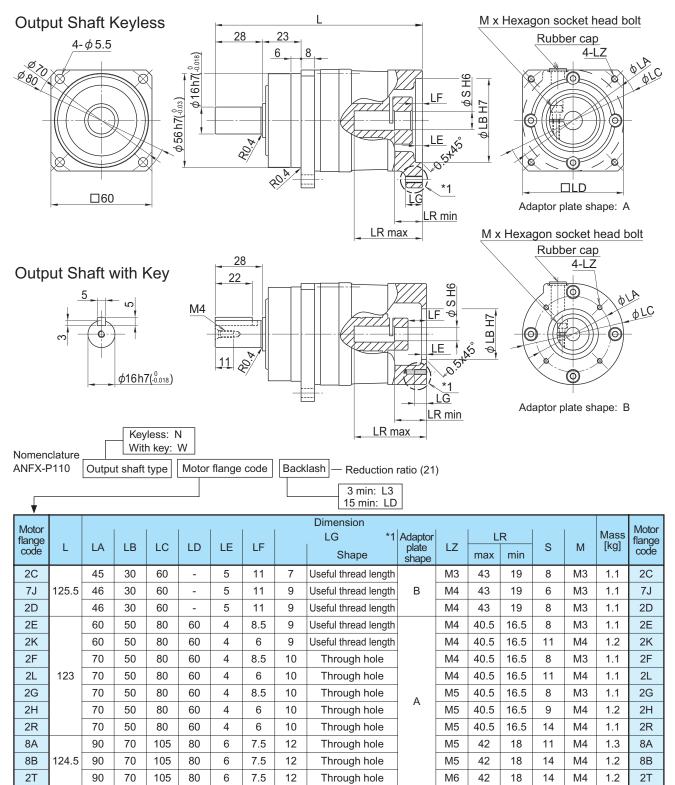
8A


8B

2T

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

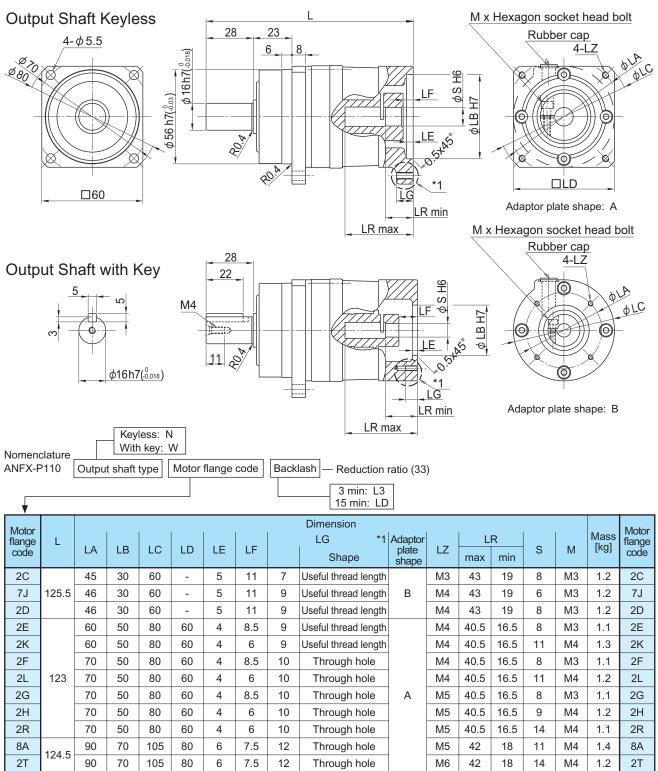
Dimension Drawings


Frame Size: P110 Reduction Ratio: 1/15

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

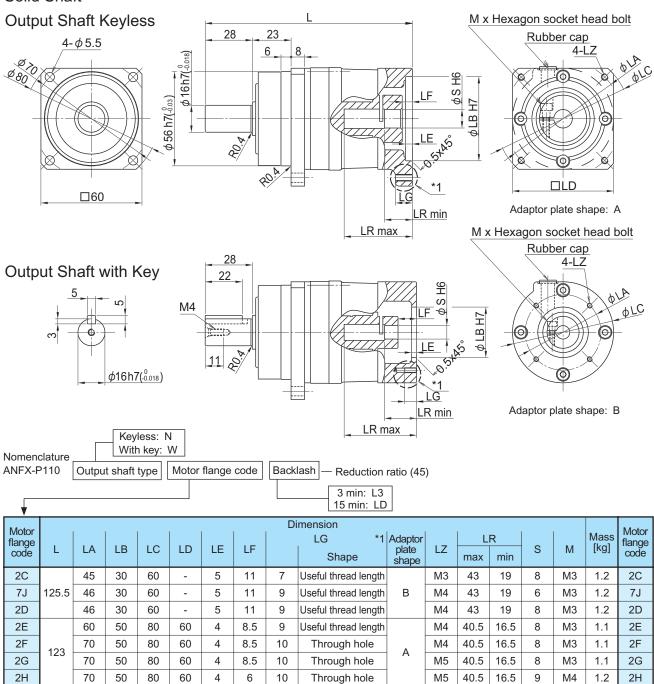
Frame Size: P110 Reduction Ratio: 1/21



Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

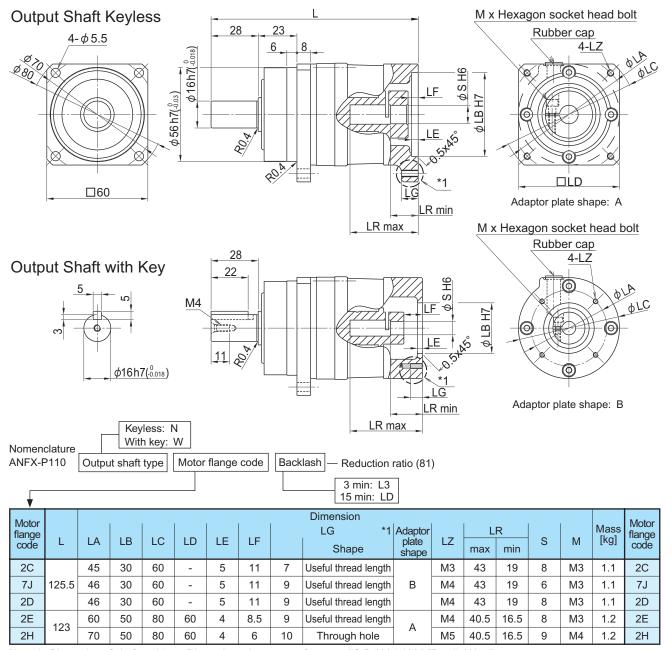
Dimension Drawings


Frame Size: P110 Reduction Ratio: 1/33

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P110 Reduction Ratio: 1/45

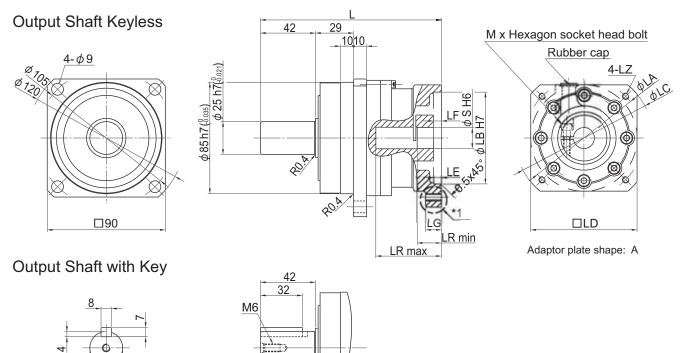


Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Dimension Drawings

Frame Size: P110 Reduction Ratio: 1/81



Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

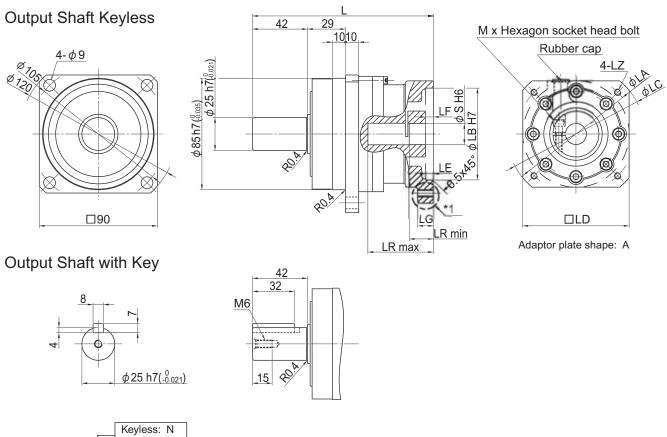
^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P120 Reduction Ratio: 1/3.7

Solid Shaft

Nomenclature With key: W	
ANFX-P120 Output shaft type Motor flange code Backlash — Reduction ra	atio (3.7)
3 min: L3	

 ϕ 25 h7($^{0}_{-0.021}$)


10 111111. 25																			
Motor	Dimension															Motor			
flange code	L	L	LA	LB	LC	LD	LE	LF		LG *1 Shape	Adaptor plate shape	LZ	max	R min	S	M	Mass [kg]	flange code	
0U	138	90	70	105	81	6	6	12	Through hole		M5	50	18.5	16	M5	2.5	0U		
7S		90	70	105	81	6	6	12	Through hole		M5	50	18.5	19	M5	2.4	7S		
7P		90	70	105	81	6	6	12	Through hole		M6	50	18.5	16	M5	2.5	7P		
1G		90	70	105	81	6	6	12	Through hole		M6	50	18.5	19	M5	2.4	1G		
0V	151.5			100	80	120	90	5	21.5	12	Through hole		M6	63.5	32	14	M4	2.6	0V
8E		100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	16	M5	2.6	8E		
7V		100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	19	M5	2.5	7V		
1L	164.5	115	95	135	100	6	17	16	Through hole		M6	46	31.5	24	M6	2.9	1L		
7A	151.5	115	95	135	100	6	19.5	16	Through hole	Α	M8	63.5	32	16	M5	2.7	7A		
7B		115	95	135	100	6	19.5	16	Through hole		M8	63.5	32	19	M5	2.6	7B		
0W	164.5			115	95	135	100	6	17	16	Through hole		M8	46	31.5	22	M6	3.0	0W
7Y		115	95	135	100	6	17	16	Through hole		M8	46	31.5	24	M6	2.9	7Y		
0Y				135	110	165	120	7	17	16	Through hole		M8	46	31.5	22	M6	3.1	0Y
7R	154.5	145	110	165	120	7	22.5	16	Through hole		M8	66.5	35	16	M5	2.8	7R		
7X		145	110	165	120	7	22.5	16	Through hole		M8	66.5	35	19	M5	2.7	7X		
1S	189.5	145	110	165	120	7	42	16	Through hole		M8	71	55	22	M6	3.2	1S		
7Z		145	110	165	120	7	42	16	Through hole		M8	71	55	24	M6	3.2	7Z		

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P120 Reduction Ratio: 1/5

Solid Shaft

Nomeno	clature	Г		less: N n key: \	- 1					
ANFX-F	120	Outpu	t shaft	type	Motor	flange	code	Backlash — Redu	ction	ratio (5)
V								3 mir 15 mi		
Motor								Dimension		
flange code	L	LA	LB	LC	LD	LE	LF	LG Shape	*1	Adaptor plate

Motor									Dimension								Motor
flange									LG *1	Adaptor		L	R	_		Mass	flange
code	L	LA	LB	LC	LD	Ш	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	code
0U		90	70	105	81	6	6	12	Through hole		M5	50	18.5	16	M5	2.5	0U
7S	138	90	70	105	81	6	6	12	Through hole		M5	50	18.5	19	M5	2.4	7S
7P	130	90	70	105	81	6	6	12	Through hole		M6	50	18.5	16	M5	2.5	7P
1G		90	70	105	81	6	6	12	Through hole		M6	50	18.5	19	M5	2.4	1G
0V ^{Note3}		100	80	120	90	5	19.5	12	Through hole		M6	63.5	30	14	M4	2.6	0V ^{Note3}
8E	151.5	100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	16	M5	2.6	8E
7V		100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	19	M5	2.5	7V
1L	164.5	115	95	135	100	6	17	16	Through hole		M6	46	31.5	24	M6	2.9	1L
7A	151.5	115	95	135	100	6	19.5	16	Through hole	Α	M8	63.5	32	16	M5	2.7	7A
7B	131.3	115	95	135	100	6	19.5	16	Through hole		M8	63.5	32	19	M5	2.6	7B
0W		115	95	135	100	6	17	16	Through hole		M8	46	31.5	22	M6	3.0	0W
7Y	164.5	115	95	135	100	6	17	16	Through hole		M8	46	31.5	24	M6	2.9	7Y
0Y		135	110	165	120	7	17	16	Through hole		M8	46	31.5	22	M6	3.1	0Y
7R	154.5	145	110	165	120	7	22.5	16	Through hole		M8	66.5	35	16	M5	2.8	7R
7X	154.5	145	110	165	120	7	22.5	16	Through hole		M8	66.5	35	19	M5	2.7	7X
1S	189.5	145	110	165	120	7	42	16	Through hole		M8	71	55	22	M6	3.2	18
7Z	109.5	145	110	165	120	7	42	16	Through hole		M8	71	55	24	M6	3.2	7Z

- Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."
 - 2: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)
 - 3: Dimensions and mass shown in the above figures are subject to change without prior notification.

Solid Shaft

154.5

189.5

145

145

145

110

110

110

165

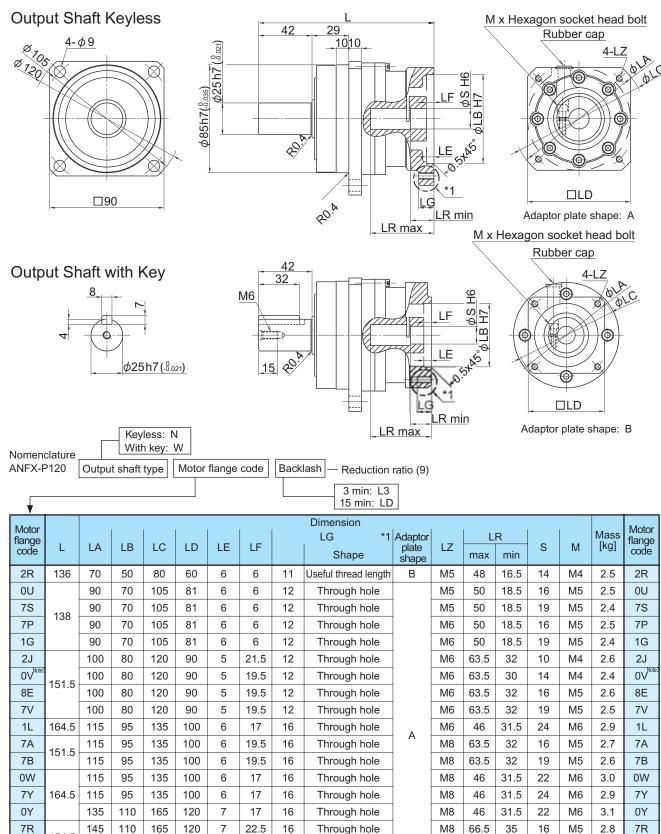
165

165

120

120

120


7

7

7X

1S

7Z

42 Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

22.5

42

16

16

16

Through hole

Through hole

Through hole

66.5

71

71

M8

M8

35

55

55

19

22

24

М5

M6

M6

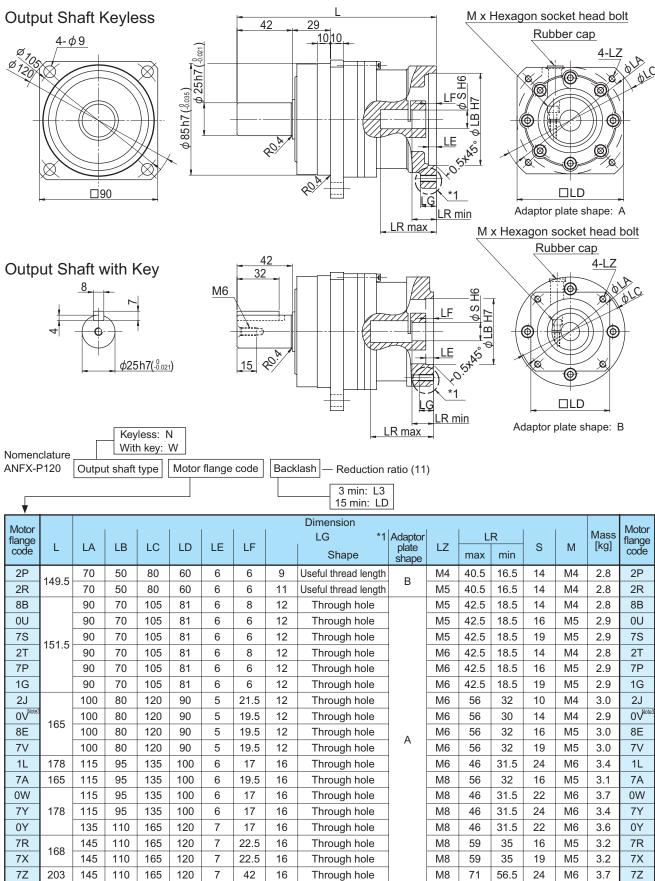
2.8

3.3

3.2

7X

1S


7Z

^{2:} Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 $^{\sim}$ +0.023)

^{3:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P120 Reduction Ratio: 1/11

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 \sim +0.023)

^{3:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Solid Shaft

7A

0W

7Y

0Y

7R

7X

7Z

115

115

115

135

145

145

145

178

168

203

95

95

110

110

110

110

135

135

135

165

165

165

165

100

100

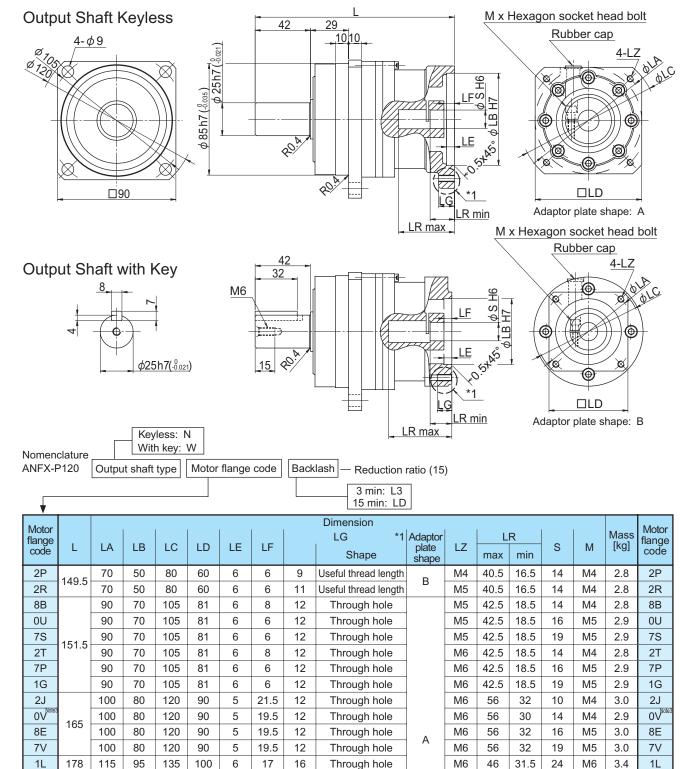
100

120

120

120

120


6

6

6

7

7

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

19.5

17

17

17

22.5

22.5

42

16

16

16

16

16

16

16

Through hole

M8

M8

M8

M8

M8

M8

56

46

46

46

59

59

71

32

31.5

31.5

31.5

35

35

56.5

16

22

24

22

16

19

24

M5

M6

M6

M6

M5

M5

M6

3.1

3.7

3.4

3.6

3.2

3.2

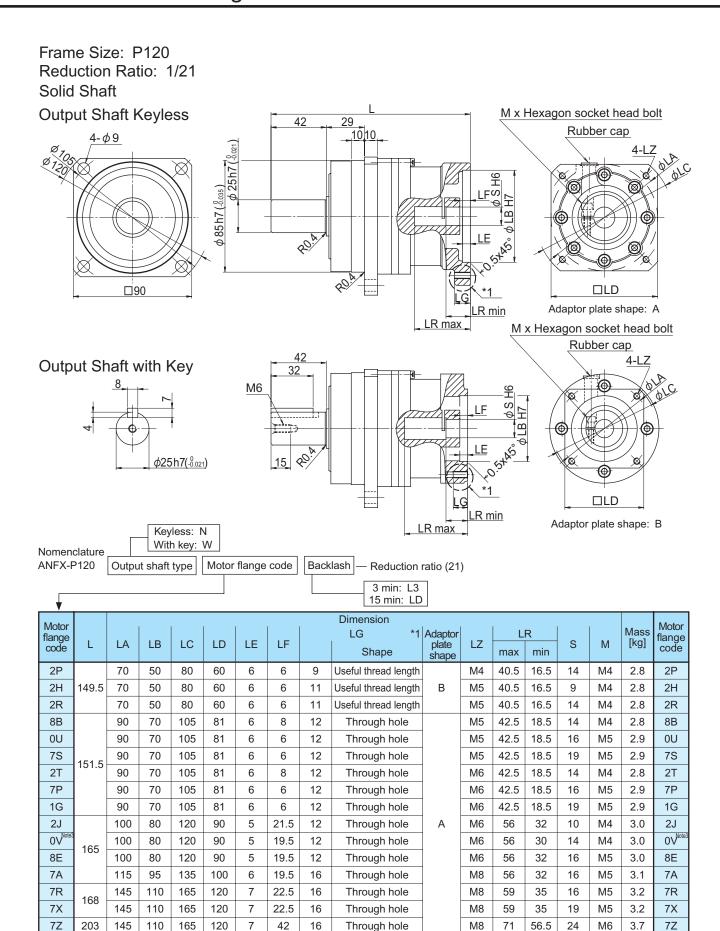
3.7

7A

0W

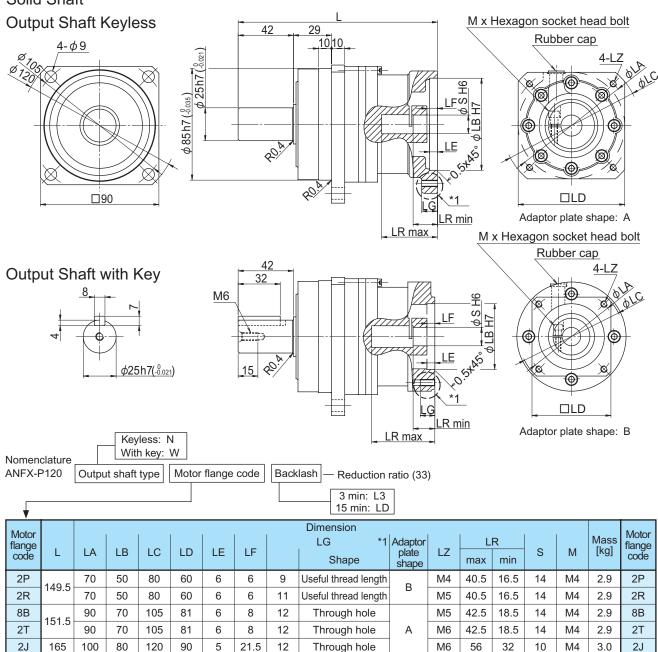
7Y

0Y


7R

7X

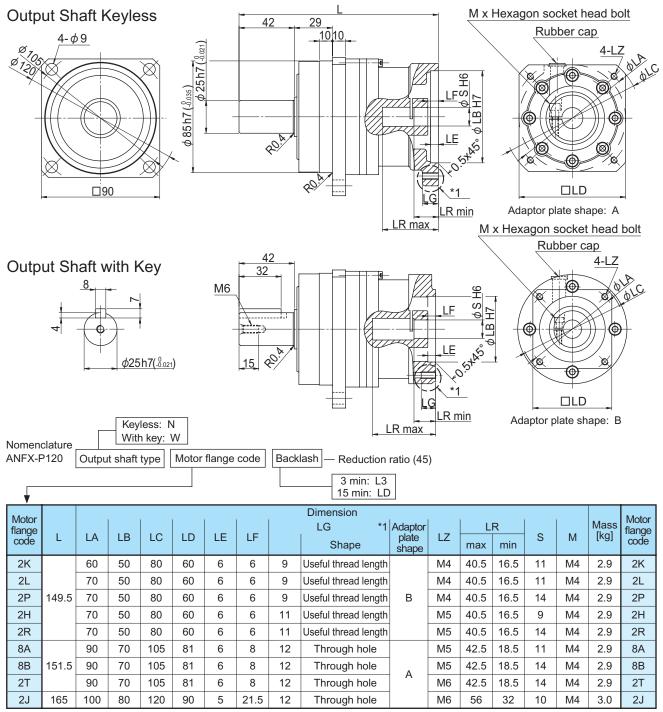
7Z


^{2:} Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)

^{3:} Dimensions and mass shown in the above figures are subject to change without prior notification.

- Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."
 - 2: Dimension of coupling of motor flange code (0V) includes tolerance ($\pm 0.012 \sim \pm 0.023$)
 - 3: Dimensions and mass shown in the above figures are subject to change without prior notification.

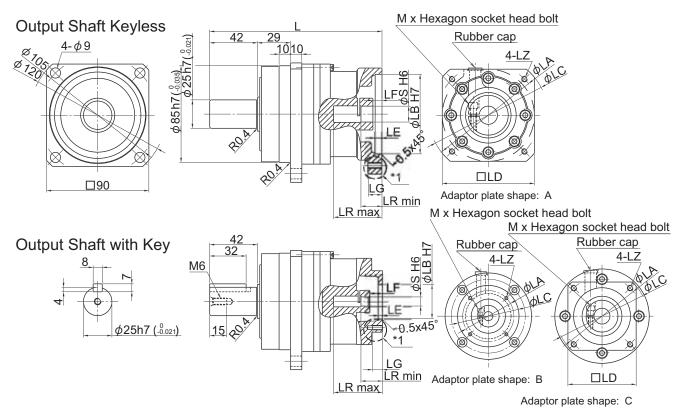
Solid Shaft



Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

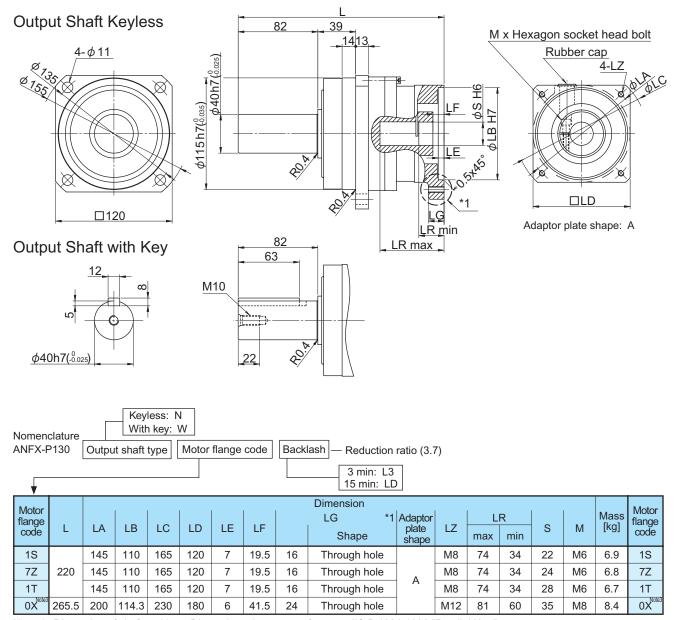
Frame Size: P120 Reduction Ratio: 1/45


Solid Shaft

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

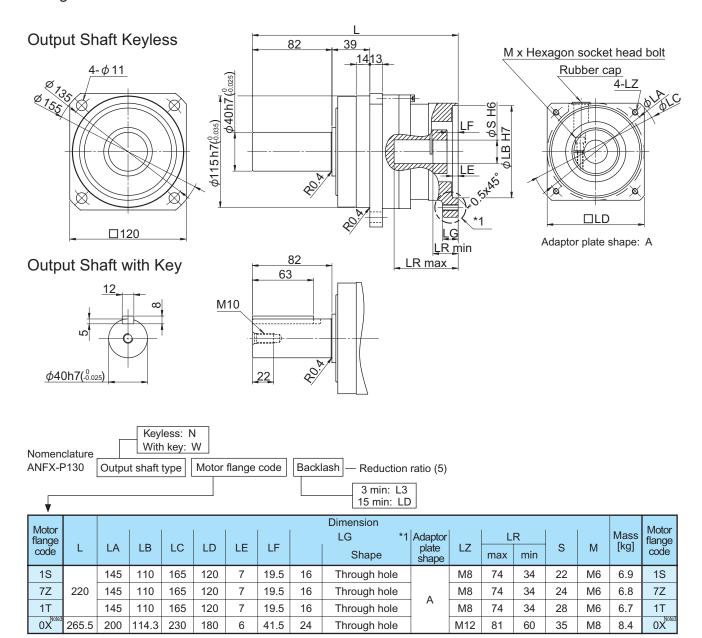
Solid Shaft


Nomenclature	Keyless: N With key: N			
ANFX-P120		Motor flange code	Backlash — Reduc	ction ratio (81)
—			3 min 15 mir	
Motor			Dimension LG	*1 Adaptor

Motor									Dimension								Motor
flange		LA	LB	LC	LD	LE	LF		LG *1	Adaptor plate	LZ	L	R	S	М	Mass [kg]	flange
code	_	L/ \	ם				i		Shape	shape		max	min		101	1 01	code
2C	152	45	30	54	-	4	11	7	Useful thread length	В	М3	43	19	8	М3	2.8	2C
2D	132	46	30	54	-	4	11	9	Useful thread length		M4	43	19	8	М3	2.8	2D
2E		60	50	80	60	6	8.5	9	Useful thread length		M4	40.5	16.5	8	М3	2.9	2E
2K		60	50	80	60	6	6	9	Useful thread length		M4	40.5	16.5	11	M4	2.9	2K
2F	149.5	70	50	80	60	6	8.5	9	Useful thread length	С	M4	40.5	16.5	8	М3	2.9	2F
2G	149.5	70	50	80	60	6	8.5	11	Useful thread length		M5	40.5	16.5	8	М3	2.9	2G
2H		70	50	80	60	6	6	11	Useful thread length		M5	40.5	16.5	9	M4	2.9	2H
2R		70	50	80	60	6	6	11	Useful thread length	Α	M5	40.5	16.5	14	M4	2.9	2R
2T	151.5	90	70	105	81	6	8	12	Through hole	A	M6	42.5	18.5	14	M4	2.9	2T

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

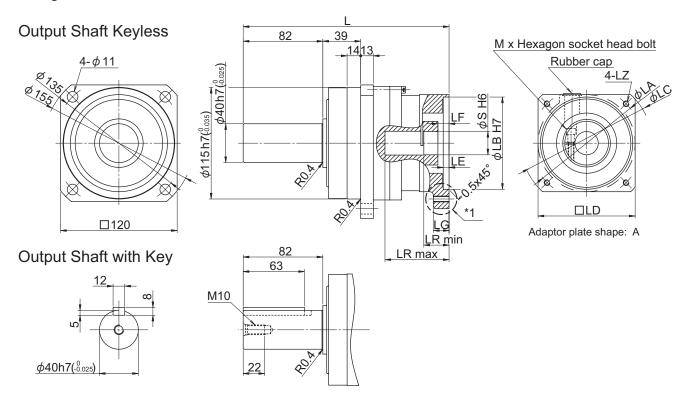
^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

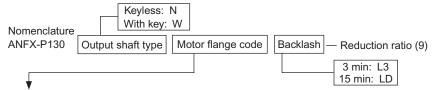

Frame Size: P130 Reduction Ratio: 1/3.7

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimension of coupling of motor flange code (0V) includes tolerance ($\pm 0.010 \sim \pm 0.026$)

^{3:} Dimensions and mass shown in the above figures are subject to change without prior notification.

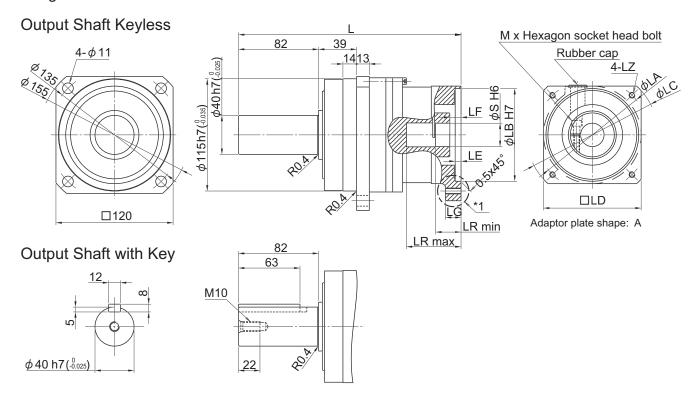



Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimension of coupling of motor flange code (0V) includes tolerance (+0.010 ~ +0.026)

^{3:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P130 Reduction Ratio: 1/9

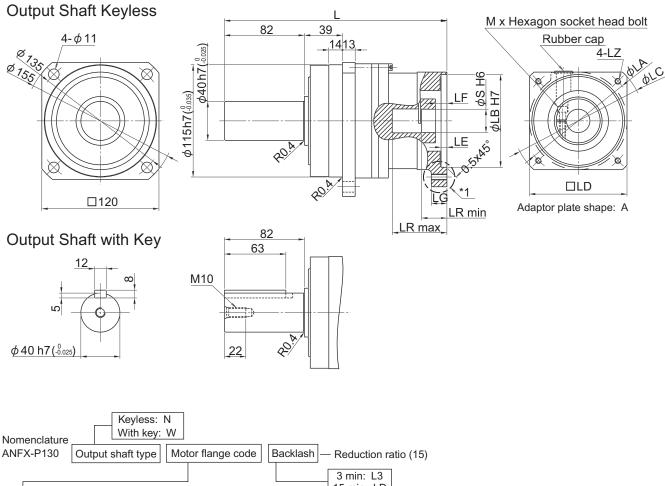


Motor									Dimension								Motor
flange									LG *1	Adaptor		L	R			Mass	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	М	[kg]	code
1L		115	95	135	100	6	11.5	16	Through hole		M6	66	26	24	M6	6.5	1L
7B	212	115	95	135	100	6	13.5	16	Through hole		M8	66	26	19	M5	6.5	7B
0W	212	115	95	135	100	6	11.5	16	Through hole		M8	66	26	22	M6	6.5	0W
7Y		115	95	135	100	6	11.5	16	Through hole		M8	66	26	24	M6	6.5	7Y
0Y		135	110	165	120	7	19.5	16	Through hole	Α	M8	74	34	22	M6	7.0	0Y
7X		145	110	165	120	7	21.5	16	Through hole	_ ^	M8	74	34	19	M5	7.0	7X
1S	220	145	110	165	120	7	19.5	16	Through hole		M8	74	34	22	M6	7.0	1S
7Z		145	110	165	120	7	19.5	16	Through hole		M8	74	34	24	M6	6.9	7Z
1T		145	110	165	120	7	19.5	16	Through hole		M8	74	34	28	M6	6.8	1T
0X ^{Note3}	265.5	200	114.3	230	180	6	41.5	24	Through hole		M12	81	60	35	M8	8.5	0X ^{Note:}

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimension of coupling of motor flange code (0V) includes tolerance (+0.010 ~ +0.026)

^{3:} Dimensions and mass shown in the above figures are subject to change without prior notification.

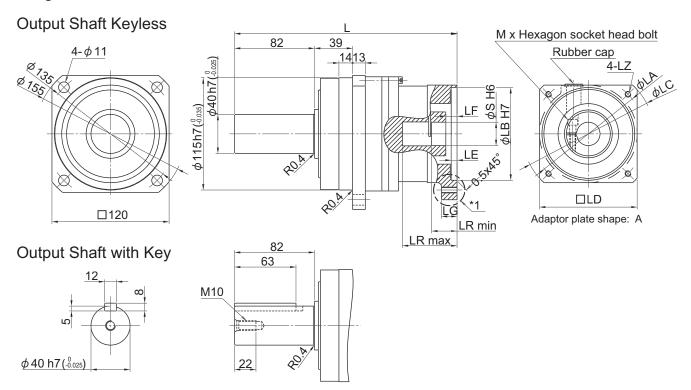

Nomenclature ANFX-P130	Keyless: N With key: W Output shaft type Motor flange code Backlash — Reduction ratio (11) 3 min: L3 15 min: LD
	Dimension

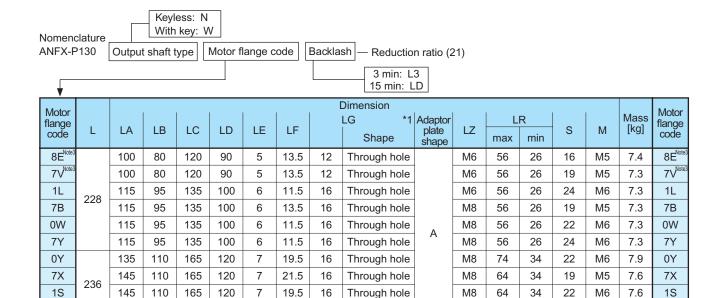
Motor								ı	Dimension								Motor
flange									LG *1	Adaptor		L	R			Mass	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	code
1L		115	95	135	100	6	11.5	16	Through hole		M6	56	26	24	M6	7.4	1L
7B	228	115	95	135	100	6	13.5	16	Through hole		M8	56	26	19	M5	7.3	7B
0W	220	115	95	135	100	6	11.5	16	Through hole		M8	56	26	22	M6	7.4	0W
7Y		115	95	135	100	6	11.5	16	Through hole	_	M8	56	26	24	M6	7.4	7Y
0Y		135	110	165	120	7	19.5	16	Through hole	Α	M8	74	34	22	M6	7.9	0Y
7X	226	145	110	165	120	7	21.5	16	Through hole		M8	64	34	19	M5	7.7	7X
1S	236	145	110	165	120	7	19.5	16	Through hole		M8	64	34	22	M6	7.0	1S
7Z		145	110	165	120	7	19.5	16	Through hole		M8	64	34	24	M6	7.7	7Z

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P130 Reduction Ratio: 1/15




									15 min: L	.D							
Motor									Dimension								Motor
flange		LA	LB	LC	LD	LE	LF		LG *1	Adaptor plate	LZ	L	R	S	М	Mass [kg]	flange
code	_	LA	LD	LC	LD	LE	LF		Shape	shape	LZ	max	min	3	IVI	[1,9]	code
1L		115	95	135	100	6	11.5	16	Through hole		M6	56	26	24	M6	7.4	1L
7B	228	115	95	135	100	6	13.5	16	Through hole		M8	56	26	19	M5	7.3	7B
0W	220	115	95	135	100	6	11.5	16	Through hole		M8	56	26	22	M6	7.4	0W
7Y		115	95	135	100	6	11.5	16	Through hole	Α	M8	56	26	24	M6	7.4	7Y
0Y		135	110	165	120	7	19.5	16	Through hole		M8	74	34	22	M6	7.9	0Y
7X	236	145	110	165	120	7	21.5	16	Through hole		M8	64	34	19	M5	7.7	7X
1S	230	145	110	165	120	7	19.5	16	Through hole		M8	64	34	22	M6	7.0	18
7Z		145	110	165	120	7	19.5	16	Through hole		M8	64	34	24	M6	7.7	7Z

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Flange Shaft

Through hole

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

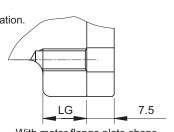
19.5

16

7

2: Shape of flange plate for motor

110


165

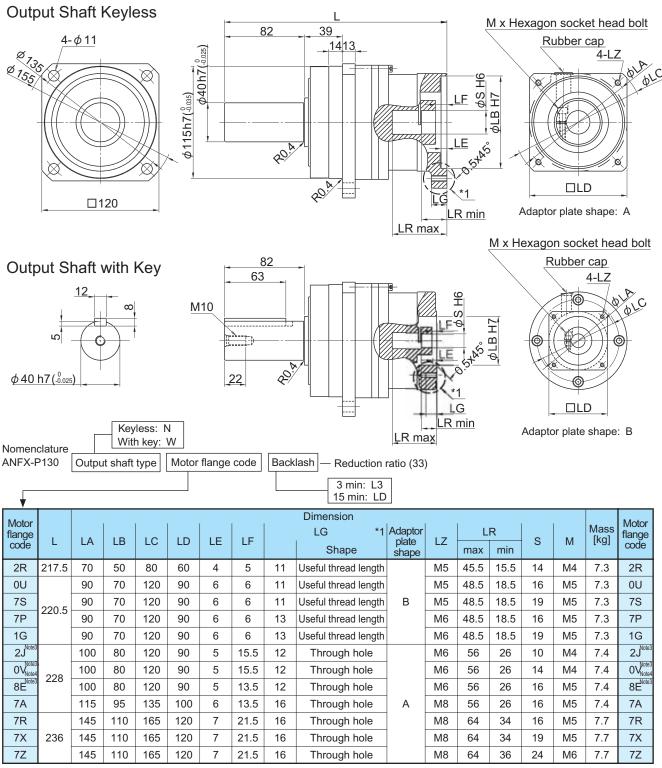
120

145

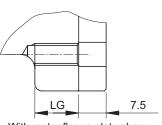
7Z

3: Dimensions and mass shown in the above figures are subject to change without prior notification.

M6

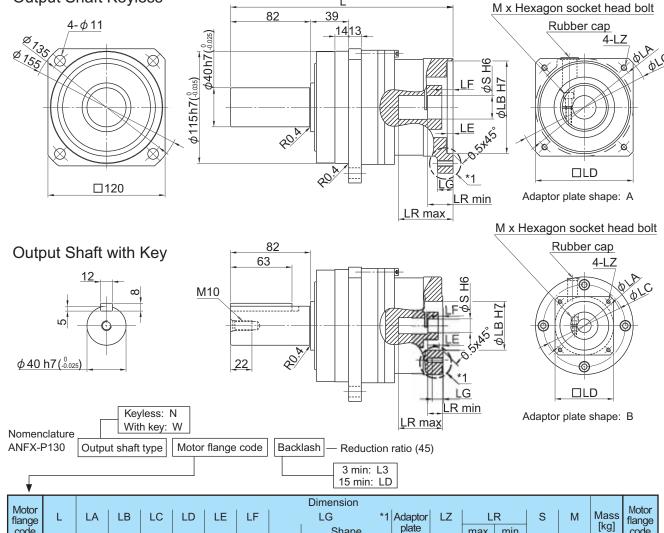

34

24


7Z

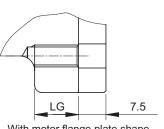
Frame Size: P130 Reduction Ratio: 1/33

Flange Shaft

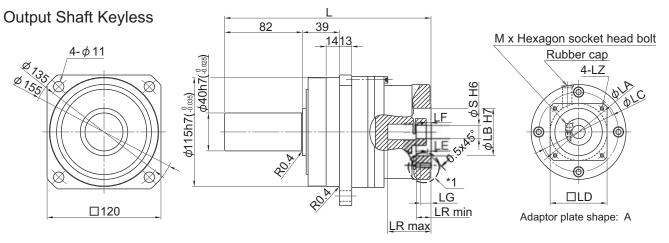

- Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."
 - 2: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)
 - 3: Shape of flange plate for motor
 - 4: Dimensions and mass shown in the above figures are subject to change without prior notification.

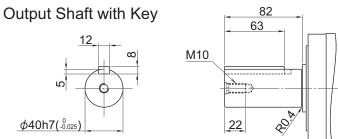
With motor flange plate shape

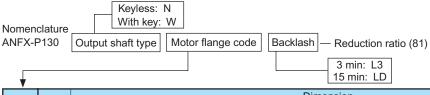
Output Shaft Keyless


Flange Shaft

Motor									Dimension								Motor
flange	L	LA	LB	LC	LD	LE	LF		LG *1	Adaptor	LZ	L	R	S	М	Mass	flange
code									Shape	plate shape		max	min			[kg]	code
2R	217.5	70	50	80	60	4	5	11	Useful thread length		M5	45.5	15.5	14	M4	7.3	2R
0U		90	70	120	90	6	6	11	Useful thread length		M5	48.5	18.5	16	M5	7.3	0U
7S	220.5	90	70	120	90	6	6	11	Useful thread length	В	M5	48.5	18.5	19	M5	7.3	7S
7P	220.5	90	70	120	90	6	6	13	Useful thread length		M6	48.5	18.5	16	M5	7.3	7P
1G		90	70	120	90	6	6	13	Useful thread length		M6	48.5	18.5	19	M5	7.3	1G
2J ^{Note3}		100	80	120	90	5	15.5	12	Through hole		M6	56	26	10	M4	7.4	2J ^{Note3}
OV _{Note4}	228	100	80	120	90	5	15.5	12	Through hole		M6	56	26	14	M4	7.4	OV _{Note4}
8E ^{Note3}	220	100	80	120	90	5	13.5	12	Through hole		M6	56	26	16	M5	7.4	8E ^{Note3}
7A		115	95	135	100	6	13.5	16	Through hole	Α	M8	56	26	16	M5	7.4	7A
7R		145	110	165	120	7	21.5	16	Through hole		M8	64	34	16	M5	7.7	7R
7X	236	145	110	165	120	7	21.5	16	Through hole		M8	64	34	19	M5	7.7	7X
7Z		145	110	165	120	7	21.5	16	Through hole		M8	64	36	24	M6	7.7	7Z

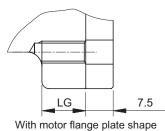

Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

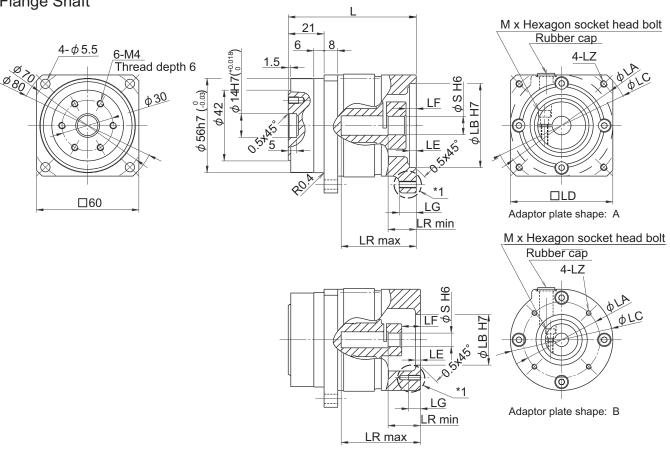

- 2: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)
- 3: Shape of flange plate for motor
- 4: Dimensions and mass shown in the above figures are subject to change without prior notification.



Frame Size: P130 Reduction Ratio: 1/81

Flange Shaft

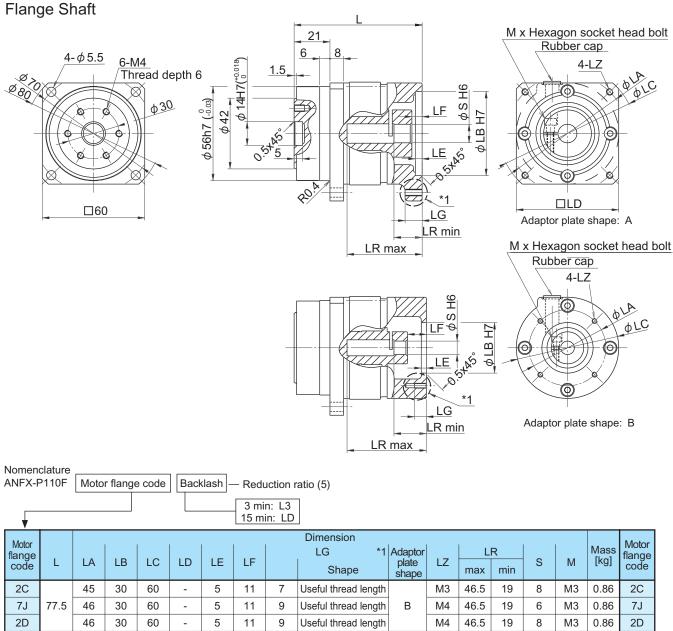




Motor				I	ı	ı			Dimension	l	ı		_		ı	Mass	Motor
flange code	L	LA	LB	LC	LD	LE	LF		LG *1 Shape	Adaptor plate shape	LZ	max	min	S	М	Mass [kg]	flange code
2L		70	50	80	60	4	5	9	Useful thread length		M4	45.5	15.5	11	M4	7.3	2L
2P	047.5	70	50	80	60	4	5	9	Useful thread length		M4	45.5	15.5	14	M4	7.3	2P
2H	217.5	70	50	80	60	4	5	11	Useful thread length		M5	45.5	15.5	9	M4	7.3	2H
2R		70	50	80	60	4	5	11	Useful thread length		M5	45.5	15.5	14	M4	7.3	2R
8A		90	70	120	90	6	8	11	Useful thread length	A	M5	48.5	18.5	11	M4	7.4	8A
8B	220.5	90	70	120	90	6	8	11	Useful thread length		M5	48.5	18.5	14	M4	7.4	8B
2T		90	70	120	90	6	8	13	Useful thread length		M6	48.5	18.5	14	M4	7.4	2T
2J	228	100	80	120	90	5	15.5	12	Through hole	1	M6	56	26	10	M4	7.4	2J

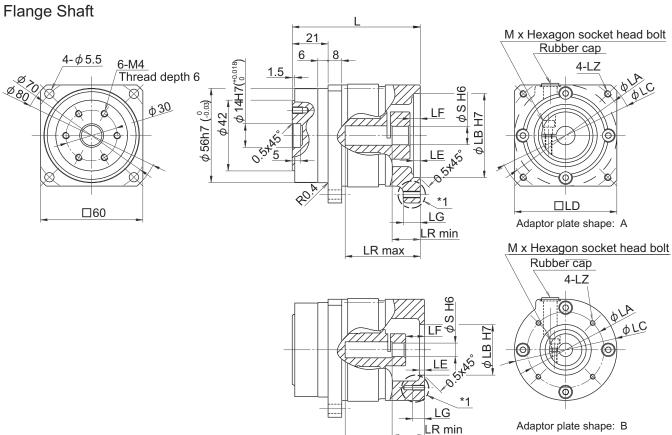
Note 1: Dimension of shaft end key: Dimension tolerance conforms to JIS B 1301-1996 "Parallel Key."

- 2: Shape of flange plate for motor
- 3: Dimensions and mass shown in the above figures are subject to change without prior notification.



Nomenclature					
ANFX-P110F	Motor flange co	de	Backlash -	— Reduction ra	atio (3.7)
				3 min: L3	
				15 min: LD	

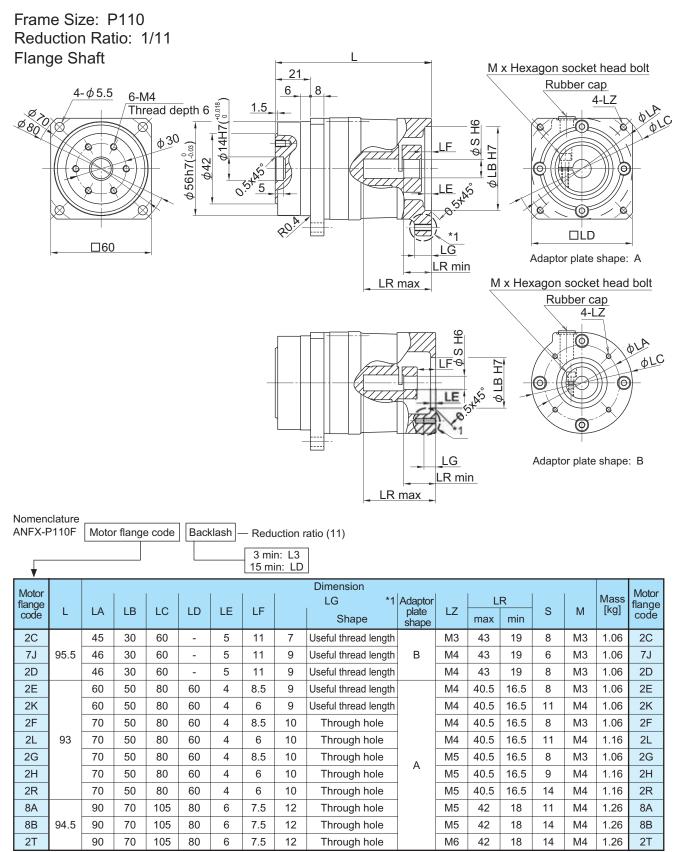
							10 1111	II. LD									
Motor			ı	ı					Dimension	,							Motor
flange code	L	LA	LB	LC	LD	LE	LF		LG *1 Shape	Adaptor plate shape	LZ	max	R min	S	M	Mass [kg]	flange code
2C		45	30	60	-	5	11	7	Useful thread length		М3	46.5	19	8	М3	0.86	2C
7J	77.5	46	30	60	-	5	11	9	Useful thread length	В	M4	46.5	19	6	М3	0.86	7J
2D		46	30	60	-	5	11	9	Useful thread length		M4	46.5	19	8	М3	0.86	2D
2E		60	50	80	60	4	8.5	8	Useful thread length		M4	44	16.5	8	М3	0.86	2E
2K		60	50	80	60	4	6	8	Useful thread length		M4	44	16.5	11	M4	0.86	2K
2F		70	50	80	60	4	8.5	10	Through hole		M4	44	16.5	8	М3	0.86	2F
2L	75	70	50	80	60	4	6	10	Through hole		M4	44	16.5	11	M4	0.86	2L
2P	/5	70	50	80	60	4	6	10	Through hole		M4	44	16.5	14	M4	0.86	2P
2G		70	50	80	60	4	8.5	10	Through hole		M5	44	16.5	8	М3	0.86	2G
2H		70	50	80	60	4	6	10	Through hole	Α	M5	44	16.5	9	M4	0.86	2H
2R		70	50	80	60	4	6	10	Through hole		M5	44	16.5	14	M4	0.86	2R
8A		90	70	105	80	6	7.5	12	Through hole		M5	45.5	18	11	M4	0.96	8A
8B	76.5	90	70	105	80	6	7.5	12	Through hole		M5	45.5	18	14	M4	0.96	8B
2T		90	70	105	80	6	7.5	12	Through hole		M6	45.5	18	14	M4	0.96	2T
2J	82	100	80	120	90	5	13	12	Through hole		M6	51	23.5	10	M4	1.06	2J
8E	98.5	100	80	120	90	6	9.5	12	Through hole		M6	41	22	16	M5	1.26	8E


Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

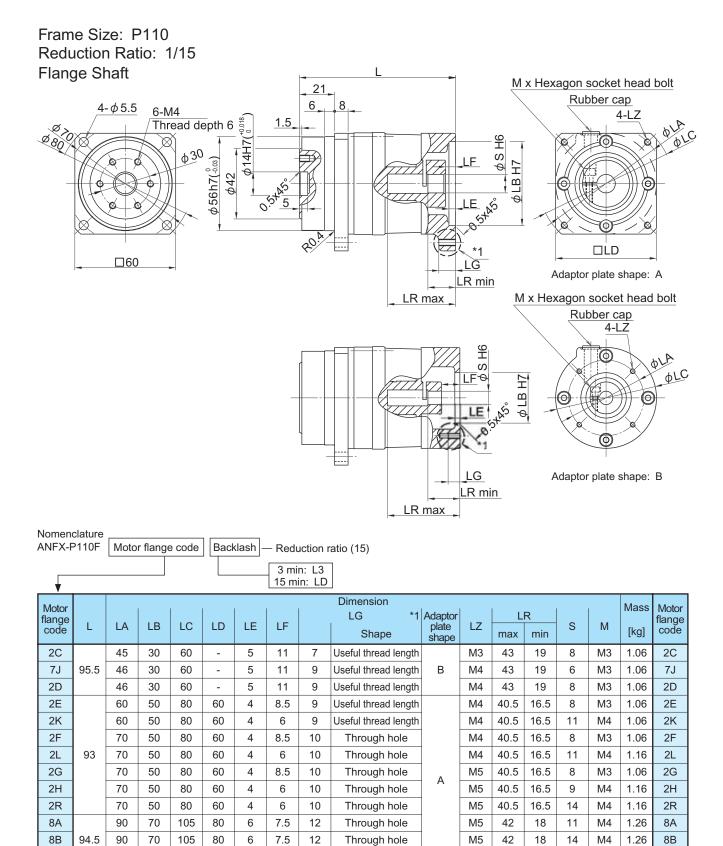
Frame Size: P110 Reduction Ratio: 1/5

Motor									Dimension								Motor
flange									LG *1	Adaptor		L	R	_		Mass	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	code
2C		45	30	60	-	5	11	7	Useful thread length		М3	46.5	19	8	М3	0.86	2C
7J	77.5	46	30	60	-	5	11	9	Useful thread length	В	M4	46.5	19	6	МЗ	0.86	7J
2D		46	30	60	-	5	11	9	Useful thread length		M4	46.5	19	8	МЗ	0.86	2D
2E		60	50	80	60	4	8.5	8	Useful thread length		M4	44	16.5	8	МЗ	0.86	2E
2K		60	50	80	60	4	6	8	Useful thread length		M4	44	16.5	11	M4	0.86	2K
2F		70	50	80	60	4	8.5	10	Through hole		M4	44	16.5	8	МЗ	0.86	2F
2L	75	70	50	80	60	4	6	10	Through hole		M4	44	16.5	11	M4	0.86	2L
2P	/5	70	50	80	60	4	6	10	Through hole		M4	44	16.5	14	M4	0.86	2P
2G		70	50	80	60	4	8.5	10	Through hole		M5	44	16.5	8	М3	0.86	2G
2H		70	50	80	60	4	6	10	Through hole	Α	M5	44	16.5	9	M4	0.86	2H
2R		70	50	80	60	4	6	10	Through hole		M5	44	16.5	14	M4	0.86	2R
8A		90	70	105	80	6	7.5	12	Through hole		M5	45.5	18	11	M4	0.96	8A
8B	76.5	90	70	105	80	6	7.5	12	Through hole		M5	45.5	18	14	M4	0.96	8B
2T		90	70	105	80	6	7.5	12	1.5		M6	45.5	18	14	M4	0.96	2T
2J	82	100	80	120	90	5	13				M6	51	23.5	10	M4	1.06	2J
8E	98.5	100	80	120	90	6	9.5	12	Through hole		M6	41	22	16	M5	1.26	8E

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.



LR max


Nomenclature					
ANFX-P110F	Motor flang	ge code	Е	acklash	— Reduction ratio (9)
					3 min: L3
<u> </u>					15 min: LD

Motor									Dimension								Motor
flange	L	LA	LB	LC	LD	LE	LF		LG *1 Shape	Adaptor plate shape	LZ	max	R min	S	M	Mass [kg]	flange
2C		45	30	60	-	5	11	7	Useful thread length		М3	46.5	19	8	M3	0.86	2C
7J	77.5	46	30	60	-	5	11	9	Useful thread length	В	M4	46.5	19	6	М3	0.86	7J
2D		46	30	60	-	5	11	9	Useful thread length		M4	46.5	19	8	МЗ	0.86	2D
2E		60	50	80	60	4	8.5	8	Useful thread length		M4	44	16.5	8	М3	0.86	2E
2K		60	50	80	60	4	6	8	Useful thread length		M4	44	16.5	11	M4	0.86	2K
2F		70	50	80	60	4	8.5	10	Through hole		M4	44	16.5	8	МЗ	0.86	2F
2L	75	70	50	80	60	4	6	10	Through hole		M4	44	16.5	11	M4	0.86	2L
2P	/5	70	50	80	60	4	6	10	Through hole		M4	44	16.5	14	M4	0.86	2P
2G		70	50	80	60	4	8.5	10	Through hole		M5	44	16.5	8	МЗ	0.86	2G
2H		70	50	80	60	4	6	10	Through hole	Α	M5	44	16.5	9	M4	0.86	2H
2R		70	50	80	60	4	6	10	Through hole		M5	44	16.5	14	M4	0.86	2R
8A		90	70	105	80	6	7.5	12	Through hole		M5	45.5	18	11	M4	0.96	8A
8B	76.5	90	70	105	80	6	7.5	12	Through hole		M5	45.5	18	14	M4	0.96	8B
2T		90	70	105	80	6	7.5	12	Through hole		M6	45.5	18	14	M4	0.96	2T
2J	82	100	80	120	90	5	13	12	Through hole		M6	51	23.5	10	M4	1.16	2J
8E	98.5	100	80	120	90	6	9.5	12	Through hole		M6	41	22	16	M5	1.26	8E

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

7.5 Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

12

Through hole

M6

42

18

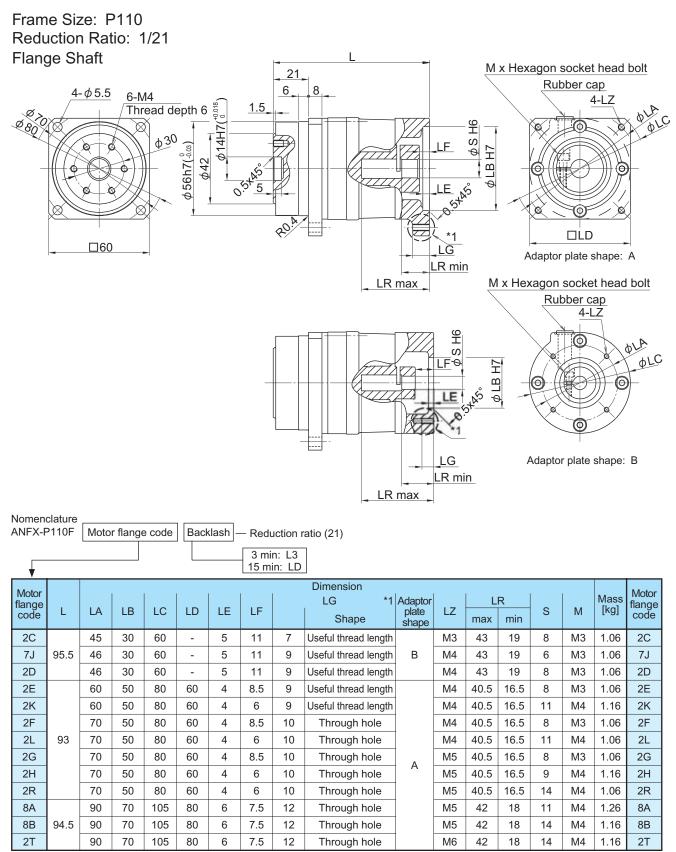
14

M4

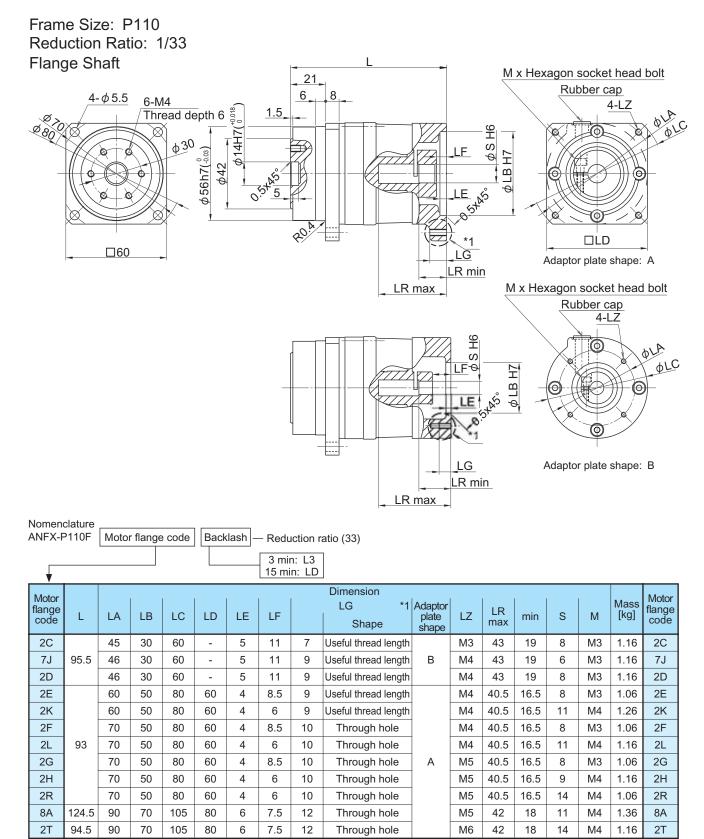
1.26

2T

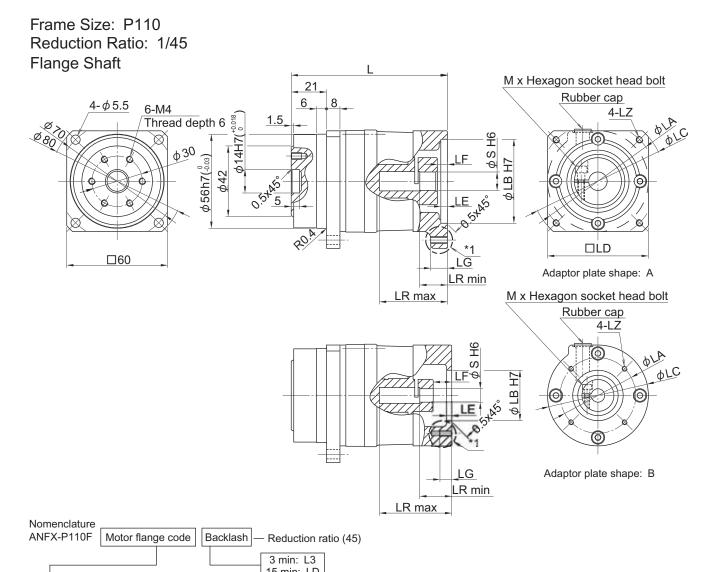
2T


90

70


105

80


6

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

₩						_ 1	5 min:	LD									
Motor									Dimension								Motor
flange									LG *1	Adaptor		L	R			Mass	flange
code				Shape	plate shape	LZ	max	min	S	M	[kg]	code					
2C		45	30	60	-	5	11	7	Useful thread length		М3	43	19	8	М3	1.16	2C
7J	95.5	46	30	60	-	5	11	9	Useful thread length	В	M4	43	19	6	М3	1.16	7J
2D		46	30	60	-	5	11	9	Useful thread length		M4	43	19	8	М3	1.16	2D
2E		60	50	80	60	4	8.5	9	Useful thread length		M4	40.5	16.5	8	М3	1.06	2E
2F	93	70	50	80	60	4	8.5	10	Through hole	_	M4	40.5	16.5	8	М3	1.06	2F
2G	93	70	50	80	60	4	8.5	10	Through hole	Α	M5	40.5	16.5	8	М3	1.06	2G
2H		70	50	80	60	4	6	10	Through hole		M5	40.5	16.5	9	M4	1.16	2H

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

95.5

93

7J

2D

2E

2H

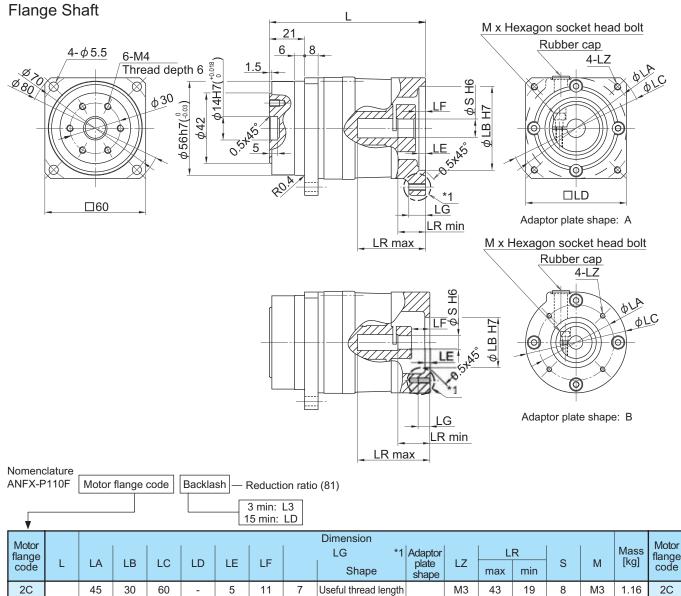
46

46

60

30

30


50

60

60

80

60

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

11

11

8.5

9

9

9

Useful thread length

Useful thread length

Useful thread length

Through hole

M4

M4

M4

М5

В

43

43

40.5

40.5

19

19

16.5

16.5

6

8

8

9

М3

М3

М3

M4

1.16

1.16

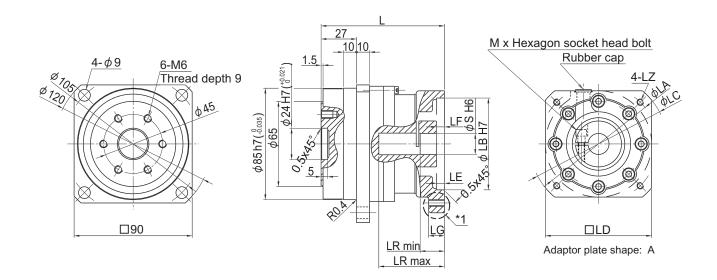
1.16

1.16

7J

2D

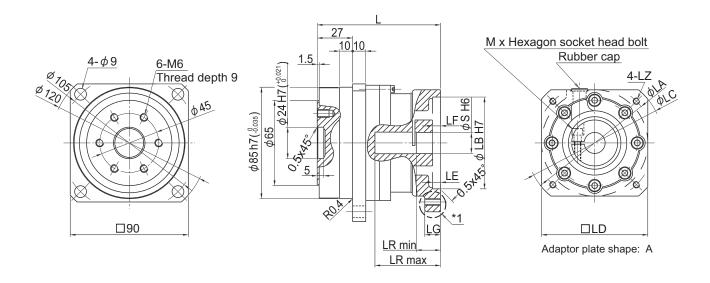
2E

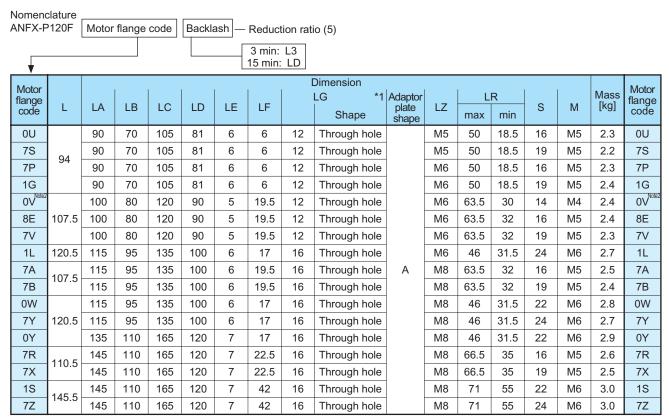

2H

5

5

4

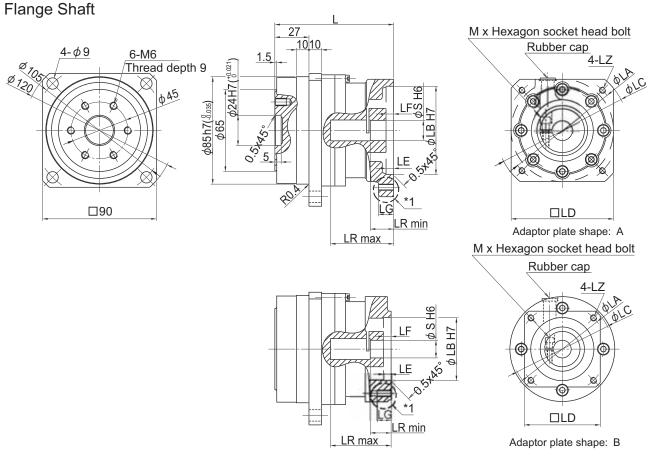

Frame Size: P120 Reduction Ratio: 1/3.7



Nomeno ANFX-P		Motor	flange	code	Backla	ash —	Reduc	tion rat	io (3.7)								
							3 min: 15 min:										
Motor				ı		1	l		Dimension LG *1	Adaptor	l	1 1	R			Mass	Motor
flange	L	LA	LB	LC	LD	LE	LF		Shape	plate	LZ	max	min	S	М	[kg]	flange code
0U		90	70	105	81	6	6	12	Through hole		M5	50	18.5	16	M5	2.3	0U
7S	94	90	70	105	81	6	6	12	Through hole		M5	50	18.5	19	M5	2.2	7S
7P	34	90	70	105	81	6	6	12	Through hole		M6	50	18.5	16	M5	2.3	7P
1G		90	70	105	81	6	6	12	Through hole		M6	50	18.5	19	M5	2.4	1G
0V ^{Note2}		100	80	120	90	5	19.5	12	Through hole		M6	63.5	30	14	M4	2.4	0V ^{Note2}
8E	107.5	100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	16	M5	2.4	8E
7V		100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	19	M5	2.3	7V
1L	120.5	115	95	135	100	6	17	16	Through hole		M6	46	31.5	24	M6	2.7	1L
7A	107.5	115	95	135	100	6	19.5	16	Through hole	Α	M8	63.5	32	16	M5	2.5	7A
7B	107.3	115	95	135	100	6	19.5	16	Through hole		M8	63.5	32	19	M5	2.4	7B
0W		115	95	135	100	6	17	16	Through hole		M8	46	31.5	22	M6	2.8	0W
7Y	120.5	115	95	135	100	6	17	16	Through hole		M8	46	31.5	24	M6	2.7	7Y
0Y		135	110	165	120	7	17	16	Through hole		M8	46	31.5	22	M6	2.9	0Y
7R	110.5	145	110	165	120	7	22.5	16	Through hole		M8	66.5	35	16	M5	2.6	7R
7X	110.5	145	110	165	120	7	22.5	16	Through hole		M8	66.5	35	19	M5	2.5	7X
1S	145.5	145	110	165	120	7	42	16	Through hole		M8	71	55	22	M6	3.0	1S
7Z	145.5	145	110	165	120	7	42	16	Through hole		M8	71	55	24	M6	3.0	7Z

Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)

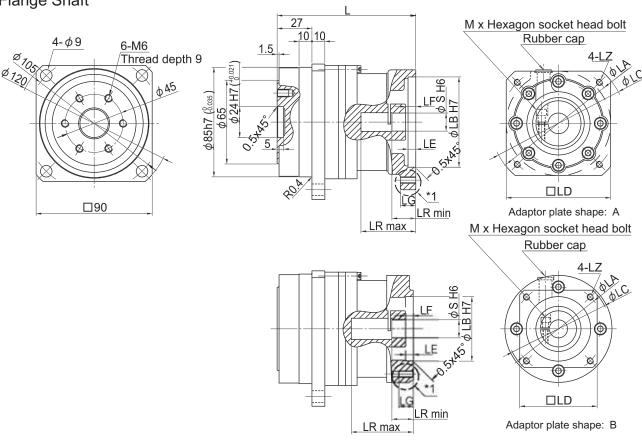
^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.



Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P120 Reduction Ratio: 1/9



Nomeno	lature					
ANFX-P	120F	Motor flang	je code	Backlash	— Reduction ra	atio (9)
_					3 min: L3 15 min: LD	ı
						Dimon

Motor									Dimension								Motor
flange									LG *1	Adaptor		L	R			Mass	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	code
2R	92	70	50	80	60	6	6	11	Useful thread length	В	M5	48	16.5	14	M4	2.3	2R
0U		90	70	105	81	6	6	12	Through hole		M5	50	18.5	16	M5	2.3	0U
7S	94	90	70	105	81	6	6	12	Through hole		M5	50	18.5	19	M5	2.2	7S
7P	94	90	70	105	81	6	6	12 Through hole			M6	50	18.5	16	M5	2.3	7P
1G		90	70	105	81	6	6	12 Through hole			M6	50	18.5	19	M5	2.2	1G
2J		100	80	120	90	5	21.5	12	Through hole		M6	63.5	32	10	M4	2.4	2J
0V ^{Note2}	107.5	100	80	120	90	5	19.5	12	Through hole		M6	63.5	30	14	M4	2.2	0V ^{Note2}
8E	107.5	100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	16	M5	2.4	8E
7V		100	80	120	90	5	19.5	12	Through hole		M6	63.5	32	19	M5	2.3	7V
1L	120.5	115	95	135	100	6	17	16	Through hole	^	M6	46	31.5	24	M6	2.7	1L
7A	107.5	115	95	135	100	6	19.5	16	Through hole	Α	M8	63.5	32	16	M5	2.5	7A
7B	107.5	115	95	135	100	6	19.5	16	Through hole		M8	63.5	32	19	M5	2.4	7B
0W		115	95	135	100	6	17	16	Through hole		M8	46	31.5	22	M6	2.8	0W
7Y	120.5	115	95	135	100	6	17	16	Through hole		M8	46	31.5	24	M6	2.7	7Y
0Y		135	110	165	120	7	17	16	Through hole		M8	46	31.5	22	M6	2.9	0Y
7R	110 5	145	110	165	120	7	22.5	16	Through hole		M8	66.5	35	16	M5	2.6	7R
7X	110.5	145	110	165	120	7	22.5	- U			M8	66.5	35	19	M5	2.6	7X
1S	445.5	145	110	165	120	7	42	16	Through hole		M8	71	55	22	M6	3.1	1S
7Z	145.5	145	110	165	120	7	42	16	Through hole		M8	71	55	24	M6	3.0	7Z

Note 1: Dimension of coupling of motor flange code (0V) includes tolerance ($+0.012 \sim +0.023$)

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

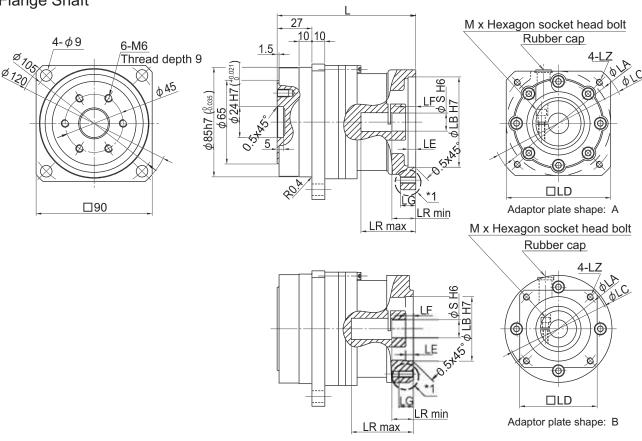
Nomenclature					
ANFX-P120F	Motor flang	e code	Ba	acklash	— Reduction ratio (11)
					3 min: L3 15 min: LD

Motor									Dimension								Motor
flange									LG *1	Adaptor		L	R	_		Mass	flange
code	┙	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	code
2P	105.5	70	50	80	60	6	6	9	Useful thread length	В	M4	40.5	16.5	14	M4	2.6	2P
2R	105.5	70	50	80	60	6	6	11	Useful thread length	Б	M5	40.5	16.5	14	M4	2.6	2R
8B		90	70	105	81	6	8	12	Through hole		M5	42.5	18.5	14	M4	2.6	8B
0U		90	70	105	81	6	6	12	Through hole		M5	42.5	18.5	16	M5	2.7	0U
7S	107.5	90	70	105	81	6	6	12	Through hole		M5	42.5	18.5	19	M5	2.7	7S
2T	107.3	90	70	105	81	6	8	12	Through hole		M6	42.5	18.5	14	M4	2.6	2T
7P		90	70	105	81	6	6	12	Through hole		M6	42.5	18.5	16	M5	2.7	7P
1G		90	70	105	81	6	6	12	Through hole		M6	42.5	18.5	19	M5	2.7	1G
2J		100	80	120	90	5	21.5	12	Through hole		M6	56	32	10	M4	2.8	2J
0V ^{Note2}	121	100	80	120	90	5	19.5	12	Through hole		M6	56	30	14	M4	2.7	0V ^{Note2}
8E	121	100	80	120	90	5	19.5	12	Through hole	Α	M6	56	32	16	M5	2.8	8E
7V		100	80	120	90	5	19.5	12	Through hole	A	M6	56	32	19	M5	2.8	7V
1L	134	115	95	135	100	6	17	16	Through hole		M6	46	31.5	24	M6	3.2	1L
7A	121	115	95	135	100	6	19.5	16	Through hole		M8	56	32	16	M5	2.9	7A
0W		115	95	135	100	6	17	16	Through hole		M8	46	31.5	22	M6	3.5	0W
7Y	134	115	95	135	100	6	17	16	Through hole		M8	46	31.5	24	M6	3.2	7Y
0Y		135	110	165	120	7	17	16	Through hole		M8	46	31.5	22	M6	3.4	0Y
7R	124	145	110	165	120	7	22.5	16	Through hole		M8	59	35	16	M5	3.0	7R
7X	124	145	110	165	120	7	22.5	16	Through hole		M8	59	35	19	M5	3.0	7X
7Z	159	145	110	165	120	7	42	16	Through hole		M8	71	56.5	24	M6	3.5	7Z

Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P120 Reduction Ratio: 1/15


Flange Shaft 27 10 10 M x Hexagon socket head bolt Rubber cap **4-** φ 9 6-M6 Thread depth 9 Ø 120/ φ45 ϕ 85h7 ($^{6.035}$) □90 Adaptor plate shape: A LR min LR max M x Hexagon socket head bolt Rubber cap R min Adaptor plate shape: B LR max

Nomenclature			
ANFX-P120F	Motor flange code	Backlash -	 Reduction ratio (15)
V			3 min: L3 15 min: LD

									Dimension								
Motor flange								1	LG *1	Adaptor		L	R			Mass	Motor flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	code
2P	105.5	70	50	80	60	6	6	9	Useful thread length	В	M4	40.5	16.5	14	M4	2.6	2P
2R	105.5	70	50	80	60	6	6	11	Useful thread length	Б	M5	40.5	16.5	14	M4	2.6	2R
8B		90	70	105	81	6	8	12	Through hole		M5	42.5	18.5	14	M4	2.6	8B
0U		90	70	105	81	6	6	12	Through hole		M5	42.5	18.5	16	M5	2.7	0U
7S	107.5	90	70	105	81	6	6	12	Through hole		M5	42.5	18.5	19	M5	2.7	7S
2T	107.3	90	70	105	81	6	8	12	Through hole		M6	4v2.5	18.5	14	M4	2.6	2T
7P		90	70	105	81	6	6	12	Through hole		M6	42.5	18.5	16	M5	2.7	7P
1G		90	70	105	81	6	6	12	Through hole		M6	42.5	18.5	19	M5	2.7	1G
2J		100	80	120	90	5	21.5	12	Through hole		M6	56	32	10	M4	2.8	2J
0V ^{Note2}	121	100	80	120	90	5	19.5	12	Through hole		M6	56	30	14	M4	2.7	0V ^{Note2}
8E	121	100	80	120	90	5	19.5	12	Through hole	A	M6	56	32	16	M5	2.8	8E
7V		100	80	120	90	5	19.5	12	Through hole	_ ^	M6	56	32	19	M5	2.8	7V
1L	134	115	95	135	100	6	17	16	Through hole		M6	46	31.5	24	M6	3.2	1L
7A	121	115	95	135	100	6	19.5	16	Through hole		M8	56	32	16	M5	2.9	7A
0W		115	95	135	100	6	17	16	Through hole		M8	46	31.5	22	M6	3.5	0W
7Y	134	115	95	135	100	6	17	16	Through hole		M8	46	31.5	24	M6	3.2	7Y
0Y		135	110	165	120	7	17	16	Through hole		M8	46	31.5	22	M6	3.4	0Y
7R	124	145	110	165	120	7	22.5	16	Through hole		M8	59	35	16	M5	3.0	7R
7X	124	145	110	165	120	7	22.5	16	Through hole		M8	59	35	19	M5	3.0	7X
7Z	159	145	110	165	120	7	42	16	Through hole		M8	71	56.5	24	M6	3.5	7Z

Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

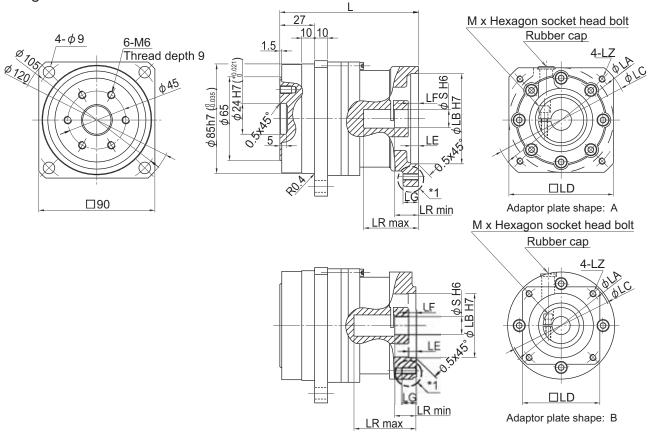
Nomenclature						
ANFX-P120F	Motor flang	ge code	В	acklash	— Reduction ratio	(21)
					3 min: L3	
					15 min: LD	

Motor		Dimension															Motor
flange						. –			LG *1	Adaptor		LR				Mass	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	Ø	M	[kg]	code
2P		70	50	80	60	6	6	9	Useful thread length		M4	40.5	16.5	14	M4	2.6	2P
2H	105.5	70	50	80	60	6	6	11	Useful thread length	В	M5	40.5	16.5	9	M4	2.6	2H
2R		70	50	80	60	6	6	11	Useful thread length		M5	40.5	16.5	14	M4	2.6	2R
8B		90	70	105	81	6	8	12	Through hole		M5	42.5	18.5	14	M4	2.6	8B
0U		90	70	105	81	6	6	12	Through hole		M5	42.5	18.5	16	M5	2.7	0U
7S	107.5	90	70	105	81	6	6	12	Through hole		M5	42.5	18.5	19	M5	2.7	7S
2T	107.5	90	70	105	81	6	8	12	Through hole		M6	42.5	18.5	14	M4	2.6	2T
7P		90	70	105	81	6	6	12	Through hole		M6	42.5	18.5	16	M5	2.7	7P
1G		90	70	105	81	6	6	12	Through hole		M6	42.5	18.5	19	M5	2.7	1G
2J		100	80	120	90	5	21.5	12	Through hole	Α	M6	56	32	10	M4	2.8	2J
0V ^{Note2}	121	100	80	120	90	5	19.5	12	Through hole		M6	56	30	14	M4	2.8	0V ^{Note2}
8E	121	100	80	120	90	5	19.5	12	Through hole		M6	56	32	16	M5	2.8	8E
7A		115	95	135	100	6	19.5	16	Through hole		M8	56	32	16	M5	2.9	7A
7R	124	145	110	165	120	7	22.5	16	Through hole		M8	59	35	16	M5	3.0	7R
7X	124	145	110	165	120	7	22.5	16	Through hole		M8	59	35	19	M5	3.0	7X
7Z	159	145	110	165	120	7	42	16	Through hole		M8	71	56.5	24	M6	3.5	7Z

Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 ~ +0.023)

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P120 Reduction Ratio: 1/33


100

120

90

5

Flange Shaft

	Nomenclature ANFX-P120F Motor flange code Backlash — Reduction ratio (33) 3 min: L3 15 min: LD																
Motor									Dimension								Motor
flange							LF		LG *1	Adaptor		LR				Mass	flange
code	L	LA	LB	LC	LD	LE			Shape	plate shape	LZ	max	min	S	M	[kg]	code
2P	105.5	70	50	80	60	6	6	9	Useful thread length	В	M4	40.5	16.5	14	M4	2.7	2P
2R	105.5	70	50	80	60	6	6	11	Useful thread length		M5	40.5	16.5	14	M4	2.7	2R
8B	107.5	90	70	105	81	6	8	12	Through hole		M5	42.5	18.5	14	M4	2.7	8B
2T	107.5	90	70	105	81	6	8	12	Through hole	Α	M6	42.5	18.5	14	M4	2.7	2T

Through hole

M4

3.0

2J

21.5 Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

12

Flange Shaft

Nomenclature

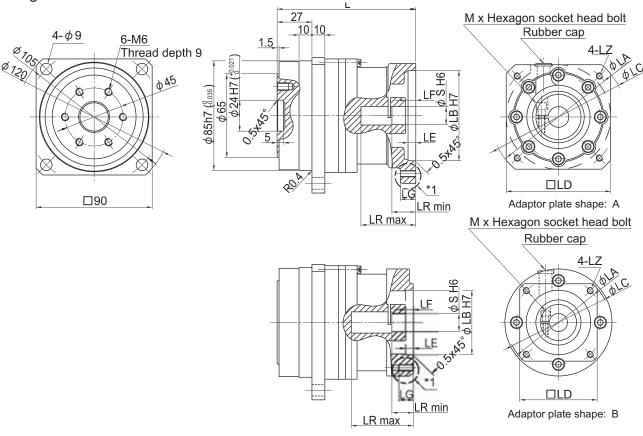
2T

2J

90

100

165


70

80

105

120

90

3 min: L3 15 min: LD																	
NA . C		Dimension															N.4 - 4
Motor flange							LF	L	.G *1	Adaptor		L	R			Mass	Motor flange
code	L	LA	LB	LC	LD	LE			Shape	plate shape	LZ	max	min	S	M	[kg]	code
2K		60	50	80	60	6	6	9	Useful thread length		M4	40.5	16.5	11	M4	2.7	2K
2L		70	50	80	60	6	6	9	Useful thread length		M4	40.5	16.5	11	M4	2.7	2L
2P	105.5	70	50	80	60	6	6	9	Useful thread length	В	M4	40.5	16.5	14	M4	2.7	2P
2H		70	50	80	60	6	6	11	Useful thread length		M5	40.5	16.5	9	M4	2.7	2H
2R		70	50	80	60	6	6	11	Useful thread length		M5	40.5	16.5	14	M4	2.7	2R
8A		90	70	105	81	6	8	12	Through hole		M5	42.5	18.5	11	M4	2.7	8A
8B	107.5	90	70	105	81	6	8	12	Through hole	_	M5	42.5	18.5	14	M4	2.7	8B

Through hole

Through hole

M6

M6

42.5

56

18.5

32

14

10

M4

M4

21.5 Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

8

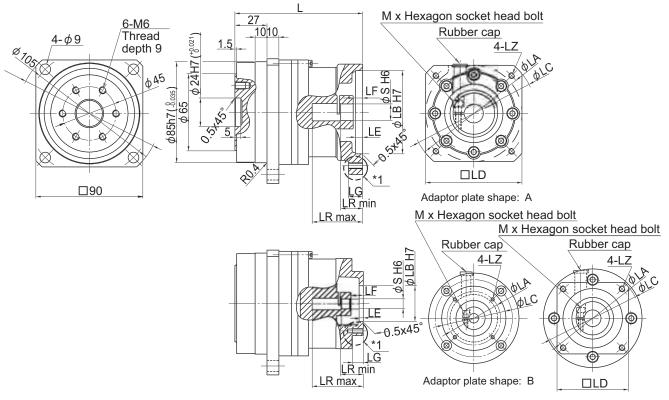
12

12

6

5

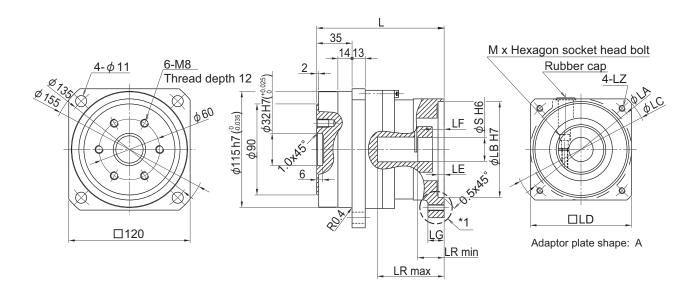
ANFX-P120F Motor flange code Backlash — Reduction ratio (45)

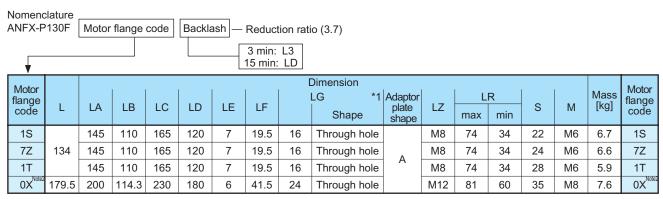

2.7

3.0

2T

2J

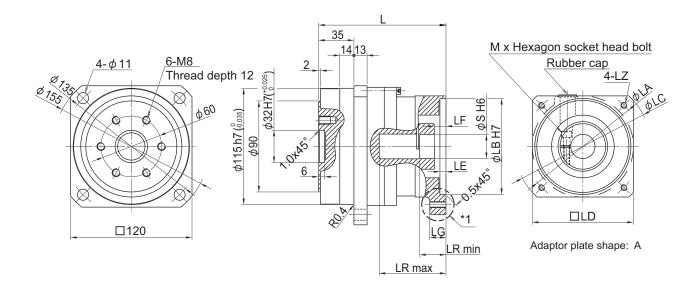

Frame Size: P120 Reduction Ratio: 1/81

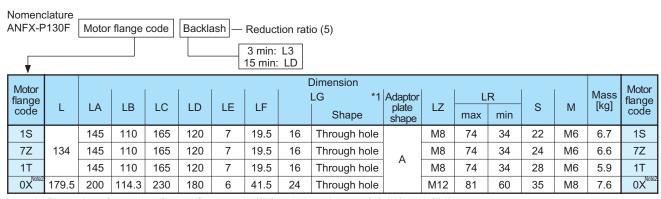


Adaptor plate shape: C

	Nomenclature ANFX-P120F Motor flange code Backlash — Reduction ratio (81) 3 min: L3 15 min: LD																
Motor		Dimension LG *1 Adaptor LR														Mass	Motor
flange	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	flange code
2C	108	45	30	54	-	4	11	7	Useful thread length	В	М3	43	19	8	М3	2.6	2C
2D	100	46	30	54	-	4	11	9	Useful thread length	Б	M4	43	19	8	МЗ	2.6	2D
2E		60	50	80	60	6	8.5	9	Useful thread length		M4	40.5	16.5	8	М3	2.7	2E
2K		60	50	80	60	6	6	9	Useful thread length		M4	40.5	16.5	11	M4	2.7	2K
2F	105.5	70	50	80	60	6	8.5	9	Useful thread length		M4	40.5	16.5	8	М3	2.7	2F
2G	105.5	70	50	80	60	6	8.5	11	Useful thread length		M5	40.5	16.5	8	МЗ	2.7	2G
2H		70	50	80	60	6	6	11	Useful thread length		M5	40.5	16.5	9	M4	2.7	2H
2R		70	50	80	60	6	6	11	Useful thread length	Α	M5	40.5	16.5	14	M4	2.7	2R
2T	107.5	90	70	105	81	6	8	12	Through hole	A	M6	42.5	18.5	14	M4	2.7	2T

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

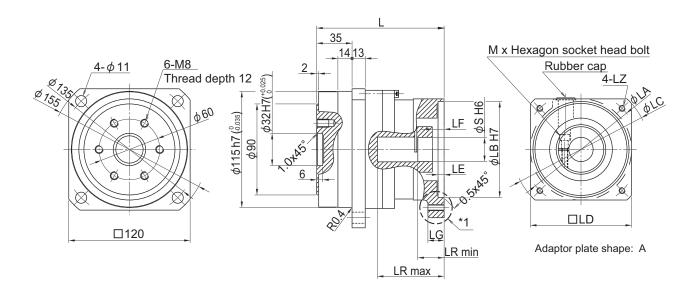


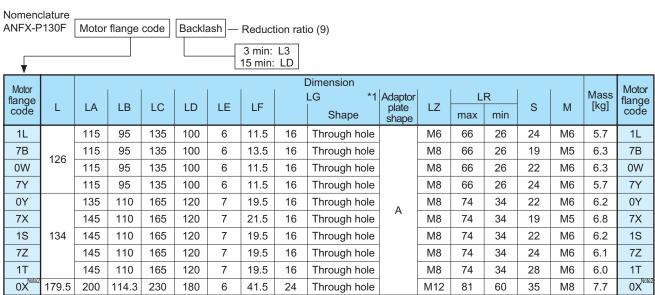


Note 1: Dimension of coupling of motor flange code (0X) includes tolerance (+0.010 $^{\sim}$ +0.026)

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P130 Reduction Ratio: 1/5

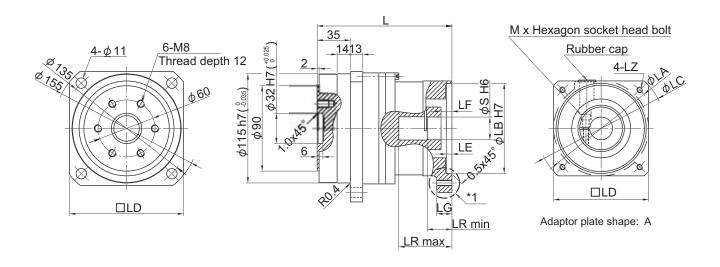


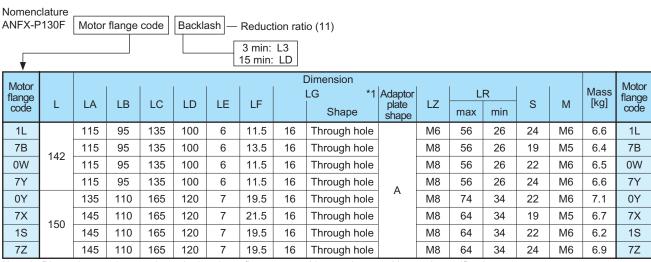


Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.010 $^{\sim}$ +0.026)

^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.

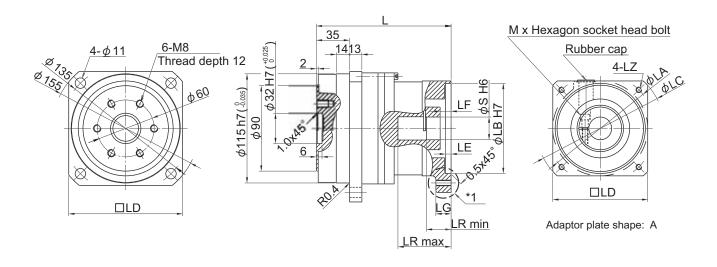
Frame Size: P130 Reduction Ratio: 1/9





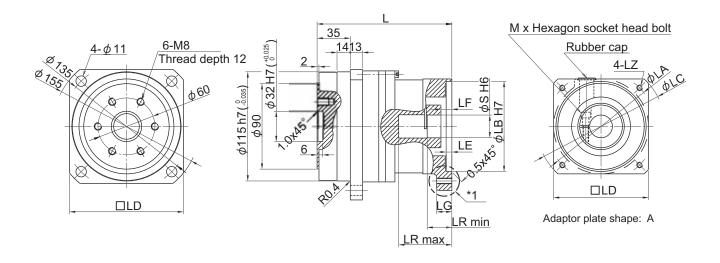
Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.010 ~ +0.026)

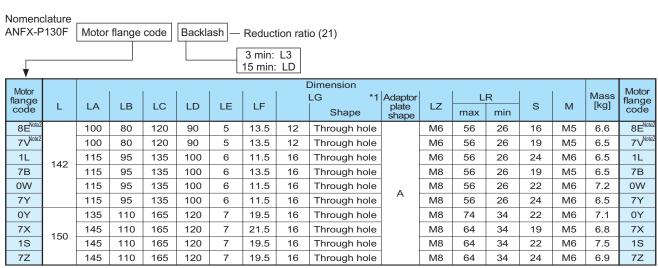
^{2:} Dimensions and mass shown in the above figures are subject to change without prior notification.


Frame Size: P130 Reduction Ratio: 1/11

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

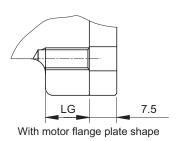
Frame Size: P130 Reduction Ratio: 1/15



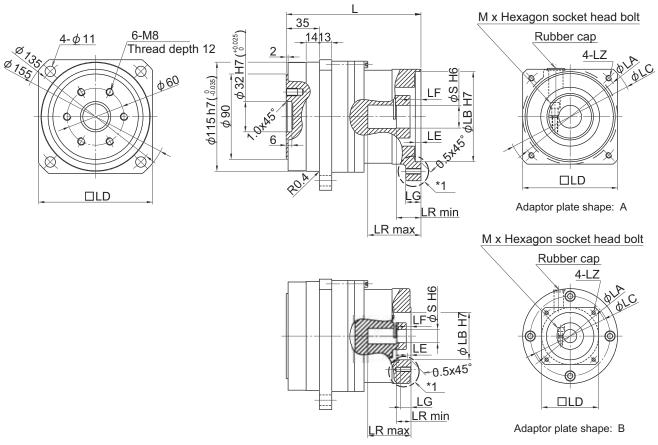

	menclature NFX-P130F Motor flange code Backlash — Reduction ratio (15) 3 min: L3 15 min: LD																
Motor				ı	ı		ı		Dimension	la			_			Mass	Motor
flange code	L	LA	LB	LC	LD	LE	LF		LG *1 Shape	Adaptor plate	LZ	max	R min	S	М	[kg]	flange code
1L		115	95	135	100	6	11.5	16	Through hole	shape	M6	56	26	24	M6	6.6	1L
7B	142	115	95	135	100	6	13.5	16	Through hole		M8	56	26	19	M5	6.4	7B
0W	142	115	95	135	100	6	11.5	16	Through hole		M8	56	26	22	M6	6.5	0W
7Y		115	95	135	100	6	11.5	16	Through hole	A	M8	56	26	24	M6	6.6	7Y
0Y		135	110	165	120	7	19.5	16	Through hole	_ A	M8	74	34	22	M6	7.1	0Y
7X	150	145	110	165	120	7	21.5	16	Through hole		M8	64	34	19	M5	6.7	7X
1S	150	145	110	165	120	7	19.5	16	Through hole		M8	64	34	22	M6	6.2	1S
7Z		145	110	165	120	7	19.5	16	Through hole		M8	64	34	24	M6	6.9	7Z

Note 1: Dimensions and mass shown in the above figures are subject to change without prior notification.

Frame Size: P130 Reduction Ratio: 1/21


Flange Shaft

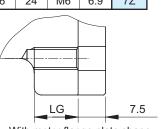
Note 1: Shape of flange plate for motor


2: Dimensions and mass shown in the above figures are subject to change without prior notification. .

76

Frame Size: P130 Reduction Ratio: 1/33

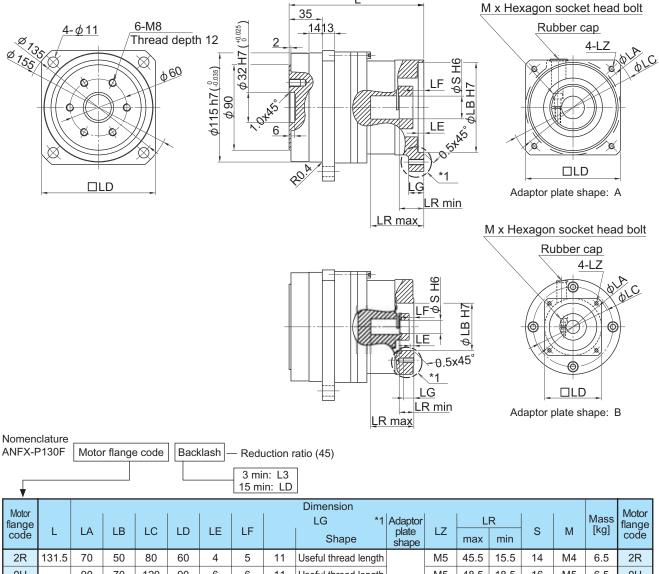
Flange Shaft


Nomenclature						
ANFX-P130F	Motor flang	ge code	В	acklash -	Reduction ra	atio (33)
					3 min: L3	
_					15 min: LD	

Motor									Dimension								Motor
flange									LG *1	Adaptor		L	R			Mass	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	М	[kg]	code
2R	131.5	70	50	80	60	4	5	11	Useful thread length		M5	45.5	15.5	14	M4	6.5	2R
0U		90	70	120	90	6	6	11	Useful thread length		M5	48.5	18.5	16	M5	6.5	0U
7S	134.5	90	70	120	90	6	6	11	Useful thread length	В	M5	48.5	18.5	19	M5	6.5	7S
7P	134.3	90	70	120	90	6	6	13	Useful thread length		M6	48.5	18.5	16	M5	6.5	7P
1G		90	70	120	90	6	6	13	Useful thread length		M6	48.5	18.5	19	M5	6.5	1G
2J ^{Note2}		100	80	120	90	5	15.5	12	Through hole		M6	56	26	10	M4	6.6	2J ^{Note2}
OV ^{Note2} 3	142	100	80	120	90	5	15.5	12	Through hole		M6	56	26	14	M4	6.6	OV ^{Note2}
8E ^{Note2}	142	100	80	120	90	5	13.5	12	Through hole		M6	56	26	16	M5	6.6	8E ^{Note2}
7A		115	95	135	100	6	13.5	16	Through hole	Α	M8	56	26	16	M5	6.6	7A
7R		145	110	165	120	7	21.5	16	Through hole		M8	64	34	16	M5	6.9	7R
7X	150	145	110	165	120	7	21.5	16	Through hole		M8	64	34	19	M5	6.9	7X
7Z		145	110	165	120	7	21.5	16	Through hole		M8	64	36	24	M6	6.9	7Z

Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.010 ~ +0.026)

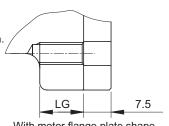
2: Shape of flange plate for motor


3: Dimensions and mass shown in the above figures are subject to change without prior notification.

With motor flange plate shape

Frame Size: P130 Reduction Ratio: 1/45

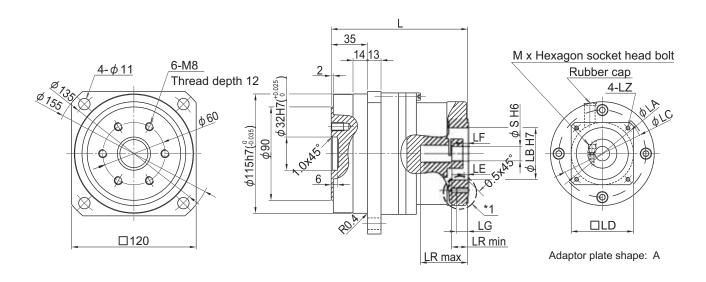
Flange Shaft



flange									LG*1	Adaptor		L	R			IVIASS	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	[kg]	code
2R	131.5	70	50	80	60	4	5	11	Useful thread length		M5	45.5	15.5	14	M4	6.5	2R
0U		90	70	120	90	6	6	11	Useful thread length		M5	48.5	18.5	16	M5	6.5	0U
7S	134.5	90	70	120	90	6	6	11	Useful thread length	В	M5	48.5	18.5	19	M5	6.5	7S
7P	134.5	90	70	120	90	6	6	13	Useful thread length		M6	48.5	18.5	16	M5	6.5	7P
1G		90	70	120	90	6	6	13	Useful thread length		M6	48.5	18.5	19	M5	6.5	1G
2J ^{Note2}		100	80	120	90	5	15.5	12	Through hole		M6	56	26	10	M4	6.6	2J ^{Note2}
OV ^{Note2}	142	100	80	120	90	5	15.5	12	Through hole		M6	56	26	14	M4	6.6	0V ^{Note2} 3
8E ^{Note2}	142	100	80	120	90	5	13.5	12	Through hole		M6	56	26	16	M5	6.6	8E ^{Note2}
7A		115	95	135	100	6	13.5	16	Through hole	Α	M8	56	26	16	M5	6.6	7A
7R		145	110	165	120	7	21.5	16	Through hole		M8	64	34	16	M5	6.9	7R
7X	150	145	110	165	120	7	21.5	16	Through hole		M8	64	34	19	M5	6.9	7X
7Z		145	110	165	120	7	21.5	16	Through hole		M8	64	36	24	M6	6.9	7Z

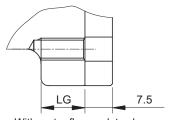
Note 1: Dimension of coupling of motor flange code (0V) includes tolerance (+0.012 $^{\sim}$ +0.023)

2: Shape of flange plate for motor


^{3:} Dimensions and mass shown in the above figures are subject to change without prior notification.

With motor flange plate shape

Frame Size: P130 Reduction Ratio: 1/81


Flange Shaft

	Nomenclature ANFX-P130F Motor flange code Backlash — Reduction ratio (81) 3 min: L3 15 min: LD																
Motor	Dimension											Motor					
flange									LG *1	Adaptor		L	R			質量 (kg)	flange
code	L	LA	LB	LC	LD	LE	LF		Shape	plate shape	LZ	max	min	S	M	(kg)	code
2L		70	50	80	60	4	5	9	Useful thread length		M4	45.5	15.5	11	M4	6.5	2L
2P	121 5	70	50	80	60	4	5	9	Useful thread length		M4	45.5	15.5	14	M4	6.5	2P
2H	131.5	70	50	80	60	4	5	11	Useful thread length		M5	45.5	15.5	9	M4	6.5	2H
2R		70	50	80	60	4	5	11	Useful thread length	В	M5	45.5	15.5	14	M4	6.5	2R
8A		90	70	120	90	6	8	11	Useful thread length		M5	48.5	18.5	11	M4	6.6	8A
8B	134.5	90	70	120	90	6	8	11	Useful thread length		M5	48.5	18.5	14	M4	6.6	8B
2T		90	70	120	90	6	8	13	Useful thread length		M6	48.5	18.5	14	M4	6.6	2T
2J ^{Note2}	142	100	80	120	90	5	15.5	12	Through hole	Α	M6	56	26	10	M4	7.4	2J ^{Not2}

Note 1: Shape of flange plate for motor

2: Dimensions and mass shown in the above figures are subject to change without prior notification.

With motor flange plate shape

Durability Check of Output Shaft Part

P1 Type of IB Series uses angular bearing to allow high maximum load moment.

Make sure that your load moment do not exceed the allowable value through the following calculation.

1. Check Maximum Load Moment

 $Mmax = \frac{Frmax \cdot (Lc + Lr) + Famax \cdot La}{10^{3}} \qquad \cdots (1)$

Make sure that: Mmax ≦ Mc

Table 4 Symbol in Formula (1)

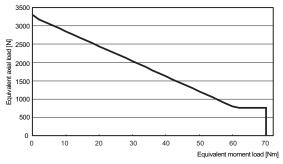

I ⊢rmav	Maximum radial load during the operation pattern	N [kgf]	
I ⊨amay	Maximum axial load during the operation pattern	N [kgf]	Refer to Fig. 6.
Lr, Lc, La	Load application location	mm	

Table 5 Allowable Moment for P1 Type

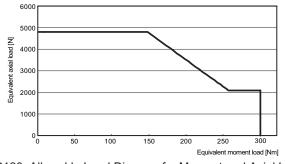
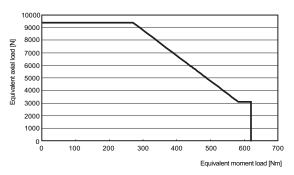

Frame	Allowable moment Mc					
size	Nm	kgfm				
P110	70	7.13				
P120	300	30.6				
P130	620	63.2				

Table 6 Dimensions


Frame	Dimension [mm]								
size	LB	LC	S	L	Z				
P110	52.76	42.38	2	28	19.62				
P120	82.56	64.53	2	42	25.97				
P130	109.02	86.26	4	82	63.24				

P110 Allowable Load Diagram for Moment and Axial Load

P120 Allowable Load Diagram for Moment and Axial Load

P130 Allowable Load Diagram for Moment and Axial Load

- Consult us when the radial load is exerted on the location exceeding the range of "L + S."
- Consult us when the value exceeds the range of allowable load. Units may sometimes be used without problem for some cases, depending on the direction of axial load and the leverage point of the load.

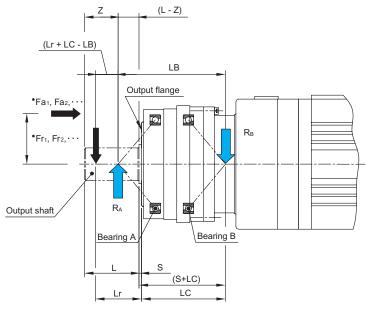


Fig. 5 External Load Effect diagram

*: *Refer to Fig. 6.

Fig. 6 shows the load of each period in the specific operation pattern.

Durability Check of Output Shaft Part

2. Check Equivalent Load Bearing Lifetime

Check lifetime by converting to equivalent load when radial or axial load varies.

Equivalent radial load: Fre

$$\mathsf{Fre} = \sqrt[3]{\frac{\mathsf{n_1} \cdot \mathsf{t_1} \cdot \left(\!\left|\mathsf{Fr_1}\right|\!\right)^3 + \mathsf{n_2} \cdot \mathsf{t_2} \cdot \left(\!\left|\mathsf{Fr_2}\right|\!\right)^3 + \cdots \, \mathsf{n_n} \cdot \mathsf{t_n} \cdot \left(\!\left|\mathsf{Fr_n}\right|\!\right)^3}{\mathsf{n_1} \cdot \mathsf{t_1} + \mathsf{n_2} \cdot \mathsf{t_2} + \cdots + \mathsf{n_n} \cdot \mathsf{t_n}}} \cdots (2)$$

Equivalent axial load: Fae

Fae =
$$\sqrt[3]{\frac{n_1 \cdot t_1 \cdot (|Fa_1|)^3 + n_2 \cdot t_2 \cdot (|Fa_2|)^3 + \cdots + n_n \cdot t_n \cdot (|Fa_n|)^3}{n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots + n_n \cdot t_n}} \cdots (3)$$

Equivalent autput speed: Neo

Neo =
$$\frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t_1 + t_2 + \dots + t_n} \cdot \dots (4)$$

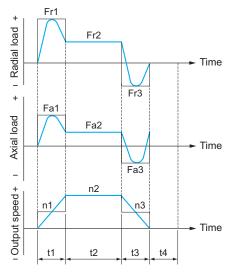


Fig. 6 Example of Load Fluctuation

Table 7 Axial Load Direction and Dynamic Equivalent Load Formula

Axial Load Direction	Load Condition	Bearing Category	Axial Load	Dynamic Equivalent Load
	$\frac{R_B}{2Y_2} + Fae \stackrel{>}{=} \frac{R_A}{2Y_2}$	Bearing A	$F_{aA} = \frac{R_B}{2Y_2} + Fae$	$P_A = X \cdot R_A + Y \cdot F_{aA}$ Note: When $P_A \le R_A$, use $P_A = R_A$.
	2Y ₂ 2Y ₂ 2Y ₂	Bearing B	-	$P_{B} = R_{B}$
(Applied to motor side)	$\frac{R_B}{2Y_0}$ + Fae $\langle \frac{R_A}{2Y_0} \rangle$	Bearing A	-	$P_A = R_A$
	2Y ₂ 2Y ₂	Bearing B	$F_{aB} = \frac{R_A}{2Y_2} - Fae$	$P_B = X \cdot R_B + Y \cdot F_{aB}$ Note: When $P_B \langle R_B$, use $P_B = R_{B}$.
	$\frac{R_B}{2Y_2} \le \frac{R_A}{2Y_2} + Fae$	Bearing A	-	$P_A = R_A$
	2Y ₂ - 2Y ₂	Bearing B	$F_{aB} = \frac{R_A}{2Y_2} + Fae$	$P_B = X \cdot R_B + Y \cdot F_{aB}$ Note: When $P_B \langle R_A$, use $P_B = R_A$.
(Applied to output side)	$\frac{R_B}{2Y_0}$ $\Rightarrow \frac{R_A}{2Y_0}$ + Fae	Bearing A	$F_{aA} = \frac{R_B}{2Y_2} - Fae$	$P_A = X \cdot R_A + Y \cdot F_{aA}$ Note: When $P_A \langle R_A$, use $P_A = R_A$.
	2Y ₂ 2Y ₂	Bearing B	-	$P_{B} = R_{B}$

Durability Check of Output Shaft Part

Table 8 Main Bearing Specification

	Dynamic rated						
Frame size	load C	×	(Y	е		
Traine size	N. (kaf)	$F_{aA}/R_{A} \ge e$	$F_{aA}/R_A > e$	$F_{aA}/R_A \ge e$	$F_{aA}/R_A > e$	Ŭ	
	N (kgf)	$F_{aB}/R_{B} \ge e$	F_{aB}/R_{B} e	F _{aB} / R _B ≧ e	F_{aB}/R_{B} e		
P110	3050 (310)						
P120	8950 (910)	1	0.35	0	0.57	1.14	
P130	13600 (1390)						

Table 9 Symbols in Table 7 & 8

Р	Dynamic equivalent load (Either the larger one of dynamic equivalent load P_A or P_B , each influencing bearing A and B)	N (kgf)	Refer to Table 7 in page 81.
R_A, R_B	Support reaction applied to each bearing A and B calculated from equivalent external load Fre and Fae	N (kgf)	-
Х	Radial load factor		
Υ	Axial load factor	-	Refer to Table 8 below.
Y ₂	Axial load factor Y ₂ = 0.57 when Fa* / R* > e		
Fa _A , Fa _B	Axial load exerted on each of bearing A and B	N (kgf)	-

Lifetime
$$L_{10h}$$

$$L = \frac{10^6}{10^6} \left[\frac{C}{C} \right]^3 \dots$$

Table 10 Coupling Factor Cf

Coupling Method	Cf
Chain	1.00
Gears	1.25
V-Belt	1.50

Table 11 Shock Factor Fs

Degree of shock	Fs
Practically no shock	1.0
Light shock	1.0-1.2
Severe shock	1.4-1.6

Table 12 Symbols in Formula (5)

Neo	Equivalent output speed	r/min	Refer to formula (4).
Р	Dynamic equivalent load	N (kgf)	Refer to Table 4.
С	Dynamic rated load	N (kgf)	Refer to Table 5.
Cf	Connected load	-	Refer to Table 7.
Fs	Shock factor	-	Refer to Table 8.

Formula for Calculation of Moment of Inertia and GD²

● Formula to Calculate Moment of Inertia and GD²

Location of rotation	Shape	Mass M [kg]	Moment of Inertia J [kgm²]	GD² GD² [kgf∙m²]
Center of axle	Cylinder	$\frac{1}{4} \cdot \pi \cdot d^2 \cdot \ell \cdot \rho$	$\frac{1}{32} \cdot \pi \cdot d^4 \cdot \ell \cdot \rho$	$\frac{1}{8} \cdot \pi \cdot d^4 \cdot \ell \cdot \rho$
Center of axle d_2 d_1 ρ $[kg/m^3]$	Cylinder hollow	$\frac{1}{4} \cdot \pi \cdot (d_1^2 - d_2^2) \cdot \ell \cdot \rho$	$\frac{1}{32} \cdot \pi \cdot (d_1^4 - d_2^4) \cdot \ell \cdot \rho$	$\frac{1}{8} \cdot \pi \cdot (d_1^4 - d_2^4) \cdot \ell \cdot \rho$
Center of axle a	Rectangular solid	a•b•c <i>•p</i>	$\frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}}{12} \cdot (\mathbf{b}^2 + \mathbf{c}^2) \cdot \rho$	$\frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}}{3} \cdot (\mathbf{b}^2 + \mathbf{c}^2) \cdot \rho$
Edge axle a b c c o [kg/m³]	Rectangular solid	a•b•c <i>∙p</i>	$\frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}}{12} \cdot (4\mathbf{b}^2 + \mathbf{c}^2) \cdot \rho$	$\frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}}{3} \cdot (4\mathbf{b}^2 + \mathbf{c}^2) \cdot \rho$
Eccentricity b o [kg/m³]	Rectangular solid	a•b•c <i>• p</i>	$\frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}}{12} \cdot (4b^2 + \mathbf{c}^2 + 12b \cdot \mathbf{y} + 12y^2) \cdot \rho$	$\frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}}{3} \cdot (4\mathbf{b}^2 + \mathbf{c}^2 + 12\mathbf{b} \cdot \mathbf{y} + 12\mathbf{y}^2) \cdot \rho$
Horizontal center axis ρ [kg/m³]	Cylinder	$\frac{1}{4} \cdot \pi \cdot d^2 \cdot \ell \cdot \rho$	$\frac{\pi \cdot d^2 \cdot \ell}{192} \cdot (4\ell + 3d^2) \cdot \rho$	$\frac{\pi \cdot d^2 \cdot \ell}{48} \cdot (4\ell + 3d^2) \cdot \rho$
Horizontal edge axis ϱ $\rho \text{ [kg/m³]}$	Cylinder	$\frac{1}{4} \cdot \pi \cdot d^2 \cdot \ell \cdot \rho$	$\frac{\pi \cdot d^2 \cdot \ell}{192} \cdot (16 \ell + 3d^2) \cdot \rho$	$\frac{\pi \cdot d^2 \cdot \ell}{48} \cdot (16\ell + 3d^2) \cdot \rho$
Horizontal Eccentricity ℓ ρ [kg/m³]	Cylinder	$\frac{1}{4} \cdot \pi \cdot d^2 \cdot \ell \cdot \rho$	$\frac{\pi \cdot d^2 \cdot \ell}{192} \cdot (16\ell^2 + 3d^2 + 48y \cdot \ell + 48y^2) \cdot \rho$	$\frac{\pi \cdot d^2 \cdot \ell}{48} \cdot (16\ell^2 + 3d^2 + 48y \cdot \ell + 48y^2) \cdot \rho$
Center of axle d ρ [kg/m³]	Sphere	$\frac{1}{6} \cdot \pi \cdot d^2 \cdot \rho$	$\frac{1}{60} \cdot \pi \cdot d^5 \cdot \rho$	$\frac{1}{15} \cdot \pi \cdot d^5 \cdot \rho$
Center of axle $\rho \text{ [kg/m³]}$	Cone	$\frac{1}{12} \cdot \pi \cdot d^2 \cdot \ell \cdot \rho$	$\frac{1}{160} \cdot \pi \cdot d^4 \cdot \ell \cdot \rho$	$\frac{1}{40} \cdot \pi \cdot d^4 \cdot \ell \cdot \rho$
Center of axle	Torus	$\frac{1}{2} \cdot \pi^2 \cdot R \cdot d^2 \cdot \rho$	$\frac{\pi^2 \cdot \mathbf{R} \cdot \mathbf{d}^2}{8} \cdot (4\mathbf{R}^2 + \frac{3\mathbf{d}^2}{4}) \cdot \rho$	$\frac{\pi^2 \cdot R \cdot d^2}{2} \cdot (4R^2 + \frac{3d^2}{4}) \cdot \rho$

Dimension: d, ℓ , a, b, c, y, R [m]

Density: ρ [kg/m³]

Formula for Calculation of Moment of Inertia, Load Torque, and Acceleration Torque

● Formula for Calculation of Moment of Inertia, Load Torque, and Acceleration Torque

Specification	Diagram	Load moment of Inertia J [kgm²]	Load torque of Reducer Output Shaft T [Nm]	Acceleration Torque Reducer Output Shaft T _S [N·m]	Relation Ship of Output Speed and Speed N [r/min]
Object in linear motion	J _B : Inertia of ball screw [gm²]	$M(\frac{P}{2\pi})^2 + J_B$ M: Mass of load [kg] P: Pitch of ball screw [m]	P/2π (μ·M·g + F) μ: Friction coefficient of ball screw g: Gravity acceleration [9.8m/sec²] F: External force [N]		VP V: Acceleration [m/min] P: Ball pitch screw [m]
Hoisting object with a pulley		M₁·D² + M₂·D² / 4 M₁: Mass of cylinder [kg] M₂: Mass of suspended object [kg] D: Diameter of drum [m]	F·D/2 F: External load [N] = M ₂ g g: Gravity acceleration [9.8m/sec ²]	2π·N·J _L 60ta J _L : Load inertia converted to output shaft of the reducer [kgm²] N: Speed [r/min] t _a : Acceleration time [sec]	V/π·D V: Acceleration [m/min] D: Drum diameter [m]
Transfer by rack or pinion	V F J J J J J J J J J J J J J J J J J J	M⋅D² 4 M: Mass of rack [kg] D: PCD of pinion [m]	F: External force [N] g: Gravity acceleration [9.8m/sec ²] F ℓ : Contact loss [Nm]	2π·N·J _L 60ta J _L : Load inertia converted to output shaft of the reducer [kgm²] N: Speed [r/min] t _a : Acceleration time [sec]	V/R V: Velocity [m/min] R = π dp or Zp•Lp dp: P, C, D [m] Zp: Teeth number Lp: Pitch
Transfer by belt conveyer	Cylinder 1 F M3 Cylinder 2 J=J ₁ +J ₂ +J ₃ +J ₄ J ₁ : Inertia of cylinder 1 [kgm²] J ₂ : Inertia of cylinder 2 [kgm²] J ₃ : Inertia of substance [kgm²] J ₄ : Inertia of belt [kgm²]	$\begin{split} &\frac{M_1 \cdot D_1^2}{8} + \frac{M_2 \cdot D_2^2}{8} \cdot \frac{D_1^2}{D_2^2} \\ &+ \frac{M_3 \cdot D_1^2}{4} + \frac{M_4 \cdot D_1^2}{4} \\ &M_1 \colon \text{ Mass of cylinder 1 [kg]} \\ &M_2 \colon \text{ Mass of cylinder 2 [kg]} \\ &M_3 \colon \text{ Mass of objec [kg]} \\ &M_4 \colon \text{ Mass of belt [kg]} \\ &D_1 \colon \text{ Diameter of cylinder 1 [m]} \\ &D_2 \colon \text{ Diameter of cylinder 2 [m]} \end{split}$	1/2 D(F+μ·M₃·g) F: External force [N] g: Gravity acceleration [9.8m/sec²]	2π·N·J _L 60ta J _L : Load inertia converted to output shaft of the reducer [kgm²] N: Speed [r/min] t _a : Acceleration time [sec]	V D1 V: Velocity [m/min] D1: Diameter of cylinder 1 [m]
Transfer by roll field	N Dy M F J ₁ : Inertia of roller 1 [kgm²] J ₂ : Inertia of roller 2 [kgm²]	$\begin{split} J_1 + (\frac{D_1}{D_2})^2 \cdot J_2 + \frac{M \cdot D_1{}^2}{4} \\ D_1: & \text{ Diameter of roll 1 [m]} \\ D_2: & \text{ Diameter of roll 2 [m]} \\ M: & \text{ Equivalent mass of } \\ & \text{ work [kg]} \end{split}$	$\frac{D(F + N \cdot \mu_1 + Mg \cdot \mu_2)}{2}$ F: Tension [N] g: Gravity acceleration [9.8m/sec²] N: Welding force [N]	$\frac{2\pi\cdot\text{N}\cdot\text{J}_\text{L}}{60\text{ta}}$ $\text{J}_\text{L}: \ [\text{kg}\cdot\text{m}^2]$ $\text{N}: \ [\text{r/min}]$ $\text{t}_\text{a}: \ [\text{sec}]$	N/π • D1 V: Velocity [m/min] D1: Roll diameter [m]

- 1. Calculate inertia and make additions when using additional apparatus for each drive part.
- 2. Calculate each element for frictional force and convert to frictional force at output shaft of reducer if necessary.
- 3. Calculate each element for external force and convert to external torque at output shaft of reducer if necessary.

Moment of Inertia (at Motor Shaft)

Table 13 Unit: x10⁻⁴kg·m²

	Input							ion ratio				
Frame	shaft	Motor flange code	3	.7		5	!	9	1	1		5
size	hollow [mm]	J	Solid shaft	Flange shaft								
	6	7J	0.142	0.141	0.116	0.116	0.098	0.097	0.140	0.140	0.137	0.137
	8	2C, 2D, 2E, 2F, 2G	0.142	0.141	0.116	0.116	0.098	0.097	0.140	0.140	0.137	0.137
	9	20, 20, 2L, 21, 20 2H	0.142	0.140	0.110	0.113	0.098	0.097	0.140	0.140	0.137	0.137
P110	10	2.J	0.212	0.211	0.186	0.185	0.167	0.167	0.211	0.211	0.200	0.200
	11	2K, 2L, 8A	0.210	0.208	0.184	0.184	0.166	0.165	0.209	0.209	0.206	0.206
	14	2P, 2R, 8B, 2T, 2V	0.202	0.201	0.177	0.176	0.158	0.158	0.202	0.202	0.199	0.200
	16	7P, 8E, 7A, 7R	0.422	0.421	0.394	0.396	0.378	0.378	0.202	0.202	0.100	0.100
	8	2C, 2D, 2E, 2F, 2G	0.122	0.121	0.001	0.000	0.010	0.070				
	9	2H										
	10	2J					0.506	0.485	0.513	0.512	0.491	0.490
	11	2K, 2L, 8A										
P120	14	2P, 2R, 8B, 2T, 2V, 0V	0.849	0.831	0.653	0.640	0.504	0.483	0.505	0.503	0.483	0.482
	16	7A, 7P, 8E, 7R, 0U	0.985	0.975	0.789	0.783	0.647	0.645	0.618	0.617	0.596	0.595
	19	7S, 1G, 7X, 7B, 7V	0.962	0.951	0.766	0.760	0.624	0.622	0.599	0.597	0.577	0.576
	22	1S, 0Y, 0W	1.679	1.668	1.483	1.477	1.341	1.339	1.338	1.337	1.316	1.315
	24	7Y, 7Z, 1L	1.657	1.646	1.460	1.455	1.318	1.317	1.315	1.314	1.293	1.293
	9	2H										
	10	2J										
	11	2K, 2L, 8A										
	14	2P, 2R, 8B, 2T, 2V, 0V										
P130	16	7A, 7P, 8E, 7R, 0U										
1 130	19	7S, 1G, 7X, 7B, 7V					1.820	1.797	1.920	1.905	1.822	1.814
	22	1S, 0Y, 0W	3.750	3.611	2.866	2.792	2.211	2.188	2.285	2.269	2.186	2.178
	24	1L, 7Y, 7Z	3.707	3.568	2.823	2.749	2.168	2.145	2.250	2.234	2.152	2.143
	28	1T, 1W, 1X, 0E, 0K	3.827	3.688	2.943	2.869	2.288	2.265				
	35	1Z, 0M, 0X	6.901	6.763	6.018	5.943	5.363	5.159				

	Input					Reducti	on ratio			
Frame	shaft	Motor flange code	2	!1	33		4	5	8	1
size	hollow [mm]	Wiotor Harrige Gode	Solid shaft	Flange shaft	Solid shaft	Flange shaft	Solid shaft	Flange shaft	Solid shaft	Flange shaft
	6	7J	0.107	0.107	0.092	0.092	0.092	0.092	0.092	0.092
	8	2C, 2D, 2E, 2F, 2G	0.107	0.107	0.092	0.092	0.092	0.092	0.092	0.092
	9	2H	0.178	0.178	0.160	0.160	0.160	0.160		
P110	10	2J								
	11	2K, 2L, 8A	0.176	0.176	0.157	0.157				
	14	2P, 2R, 8B, 2T, 2V	0.169	0.169						
	16	7P, 8E, 7A, 7R								
	8	2C, 2D, 2E, 2F, 2G							0.352	0.352
	9	2H	0.440	0.440			0.410	0.410	0.408	0.408
	10	2J	0.441	0.440						
	11	2K, 2L, 8A					0.407	0.407	0.406	0.406
P120	14	2P, 2R, 8B, 2T, 2V, 0V	0.432	0.432	0.403	0.403	0.401	0.401		
	16	7A, 7P, 8E, 7R, 0U	0.546	0.546						
	19	7S, 1G, 7X, 7B, 7V	0.527	0.526						
	22	1S, 0Y, 0W								
	24	7Y, 7Z, 1L	1.243	1.243						
	9	2H							1.265	1.265
	10	2J			1.284	1.282	1.273	1.272		
	11	2K, 2L, 8A							1.265	1.264
	14	2P, 2R, 8B, 2T, 2V, 0V			1.282	1.280	1.271	1.270	1.263	1.262
P130	16	7A, 7P, 8E, 7R, 0U	1.555	1.551	1.404	1.402	1.393	1.392		
F 130	19	7S, 1G, 7X, 7B, 7V	1.533	1.529	1.381	1.380	1.370	1.370		
	22	1S, 0Y, 0W	1.897	1.893						
	24	1L, 7Y, 7Z	1.862	1.858	1.711	1.709	1.700	1.699		
	28	1T, 1W, 1X, 0E, 0K								
	35	1Z, 0M, 0X								

GD² (at Motor Shaft)

Table 14 Unit: x10⁻⁴kg·m²

	Input						Reduct	on ratio				
Frame	shaft	Motor flange code	3	.7		5	(9	1	1	1	5
size	hollow [mm]	Wiotor hange code	Solid shaft	Flange shaft								
	6	7J	0.568	0.562	0.464	0.464	0.392	0.388	0.560	0.560	0.548	0.548
	8	2C, 2D, 2E, 2F, 2G	0.567	0.561	0.464	0.460	0.392	0.388	0.560	0.559	0.548	0.548
	9	2H	0.850	0.844	0.732	0.744	0.672	0.672	0.844	0.844	0.832	0.832
P110	10	2J	0.845	0.840	0.744	0.740	0.668	0.668				
	11	2K, 2L, 8A	0.839	0.834	0.736	0.736	0.664	0.660	0.835	0.834	0.824	0.824
	14	2P, 2R, 8B, 2T, 2V	0.809	0.803	0.708	0.704	0.632	0.632	0.807	0.807	0.796	0.796
	16	7P, 8E, 7A, 7R	1.689	1.684	1.576	1.584	1.512	1.512				
	8	2C, 2D, 2E, 2F, 2G										
	9	2H										
	10	2J					2.024	1.940	2.051	2.046	1.964	1.960
	11	2K, 2L, 8A										
P120	14	2P, 2R, 8B, 2T, 2V, 0V	3.397	3.325	2.612	2.560	2.016	1.932	2.018	2.013	1.932	1.928
	16	7A, 7P, 8E, 7R, 0U	3.942	3.899	3.156	3.132	2.588	2.580	2.472	2.467	2.384	2.380
	19	7S, 1G, 7X, 7B, 7V	3.848	3.805	3.064	3.040	2.496	2.488	2.395	2.390	2.308	2.304
	22	1S, 0Y, 0W	6.717	6.674	5.932	5.908	5.364	5.356	5.351	5.346	5.264	5.260
	24	7Y, 7Z, 1L	6.627	6.584	5.840	5.820	5.272	5.268	5.261	5.256	5.172	5.172
	9	2H										
	10	2J										
	11	2K, 2L, 8A,										
	14	2P, 2R, 8B, 2T, 2V, 0V										
P130	16	7A, 7P, 8E, 7R, 0U										
F 130	19	7S, 1G, 7X, 7B, 7V					7.280	7.188	7.681	7.619	7.288	7.256
	22	1S, 0Y, 0W	14.999	14.445	11.464	11.168	8.844	8.752	9.138	9.077	8.744	8.712
	24	1L, 7Y, 7Z	14.827	14.273	11.292	10.996	8.672	8.580	8.999	8.937	8.608	8.572
	28	1T, 1W, 1X, 0E, 0K	15.306	14.752	11.772	11.476	9.152	9.060				
	35	1Z, 0M, 0X	27.605	27.051	24.072	23.772	21.452	20.636				

	Input					Reducti	on ratio			
Frame	shaft	Motor flange code	2	21		33		45		81
size	hollow [mm]	Wotor hange code	Solid shaft	Flange shaft	Solid shaft	Flange shaft	Solid shaft	Flange shaft	Solid shaft	Flange shaft
	6	7J	0.428	0.428	0.368	0.368	0.368	0.368	0.368	0.368
	8	2C, 2D, 2E, 2F, 2G	0.428	0.428	0.368	0.368	0.368	0.368	0.368	0.368
	9	2H	0.712	0.712	0.640	0.640	0.640	0.640		
P110	10	2J								
	11	2K, 2L, 8A	0.704	0.704	0.628	0.628				
	14	2P, 2R, 8B, 2T, 2V	0.676	0.676						
	16	7P, 8E, 7A, 7R								
	8	2C, 2D, 2E, 2F, 2G							1.408	1.408
	9	2H	1.760	1.760			1.640	1.640	1.632	1.632
	10	2J	1.764	1.760						
	11	2K, 2L, 8A					1.628	1.628	1.624	1.624
P120	14	2P, 2R, 8B, 2T, 2V, 0V	1.728	1.728	1.612	1.612	1.604	1.604		
	16	7A, 7P, 8E, 7R, 0U	2.184	2.184						
	19	7S, 1G, 7X, 7B, 7V	2.108	2.104						
	22	1S, 0Y, 0W								
	24	7Y, 7Z, 1L	4.972	4.972						
	9	2H							5.060	5.060
	10	2J			5.136	5.128	5.092	5.088		
	11	2K, 2L, 8A,							5.060	5.056
	14	2P, 2R, 8B, 2T, 2V, 0V			5.128	5.120	5.084	5.080	5.052	5.048
P130	16	7A, 7P, 8E, 7R, 0U	6.220	6.204	5.616	5.608	5.572	5.568		
F 130	19	7S, 1G, 7X, 7B, 7V	6.132	6.116	5.524	5.520	5.480	5.480		
	22	1S, 0Y, 0W	7.588	7.572						
	24	1L, 7Y, 7Z	7.448	7.432	6.844	6.836	6.800	6.796		
	28	1T, 1W, 1X, 0E, 0K								
	35	1Z, 0M, 0X								

Mechanical Precision of Output Part of the Reducer

Mechanical precision of solid shaft (with and without key) and flange shaft is indicated below.

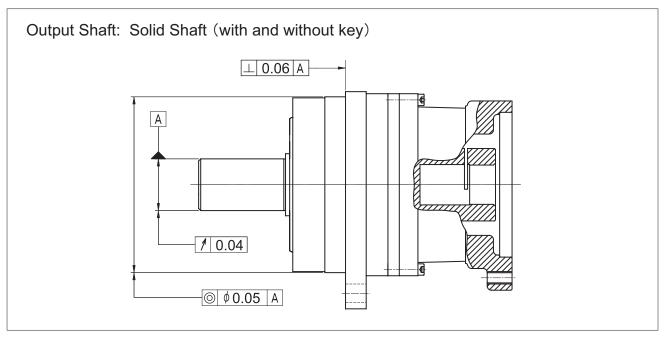


Fig. 7

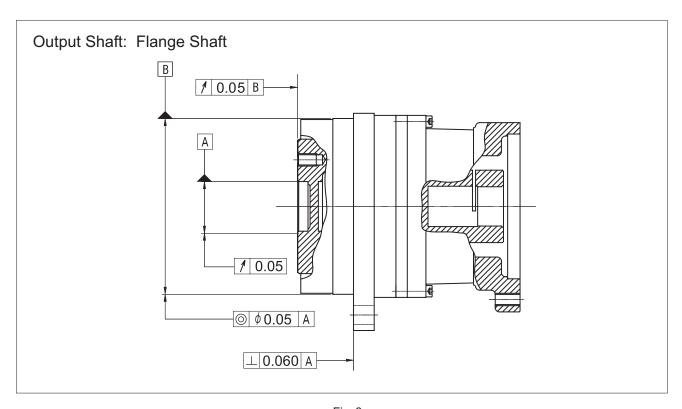
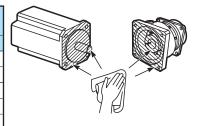


Fig. 8


Motor Attachment Procedure

Either straight type, shaft with keyway, or D shaft may be attached to the motor shaft, because special coupling is used for shaft connection part of reducer and motor. Follow the process below from (1) through (7) for assembly. (Remove key while assembly for shaft with keyway.)

- (1) Place reducer on an appropriate worktable with output shaft on the bottom side.
- (2) Remove fitting of the setting hole (1 place) of the reducer unit (1) in figure below).
- (3) Match the location by turning by hand to tighten tightening bolt of the coupling into setting hole of the reducer unit (2)in figure below).
- (4) Insert motor shaft into the center hole of the coupling, press in vertically and fit the pilot part of the reducer unit and motor.
- (5) Tighten motor and reducer unit with motor attachment bolt (4) in figure below).
- (6) Tighten coupling tightening bolt through the setting hole of the side of the reducer unit using a torque wrench bolt (④in figure below). Refer to Table 12 for necessary tightening torque.

Table 15

Coupling hole diameter	Tightening bolt	Tightening torque	Allowable transmission torque
mm		N⋅m	N⋅m
ф6	M3	1.67	9.18
ф8	IVIS	1.07	7.93
ф9			22.0
φ10	M4	3.92	22.7
φ11			24.9
φ14			26.4
φ16	ME	7.25	49.6
φ19	M5	7.35	52.9
ф22			61.8
φ24	M6	8.83	66.2
φ28			78.3
φ35	M8	21.6	99.2

Make sure that the selected unit can allow maximum emergency torque (peak torque at start and stop) in your operation cycle.

Maximum emergency torque (Peak torque at start or stop)

Reduction ratio ≤ Allowable transmission torque

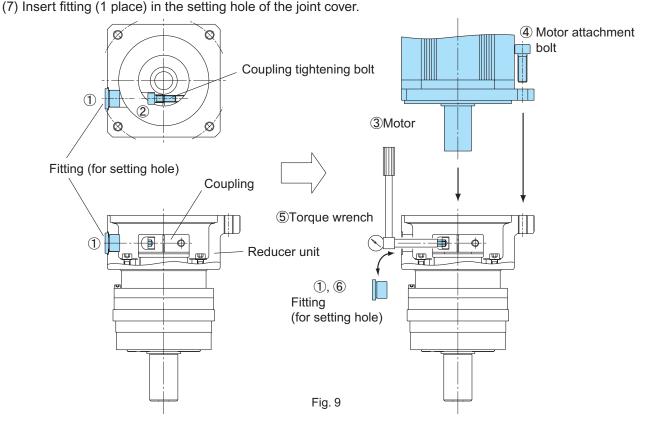


Table 16

T	Measuring	Manageria a mantha d	Sketch of	Measuring		Work accuracy	
Тур	item	Measuring method	measurement	Instrument	Grade AA	Grade A	Grade B
Foot-mount type and flange type	Run-out of shaft end	Secure the dial gauge on the floor or flange surface. Place the probe of the dial gauge on the circumference close to the shaft end. Turn the shaft once. Difference between the observed maximum and minimum values is the measured value.		Dial gauge	Work accuracy = 0.01 when $\ell \le 100$ As below when $\ell > 100$	Work accuracy = 0.02 when $\ell \le 100$ As below when $\ell > 100$	Work accuracy = 0.04 when $\ell \le 100$ As below when $\ell > 100$
type	Eccentricity of flange engagement O.D.	Secure the dial gauge on the shaft close to the flange surface. Place the probe of the dial gauge on the circumference of flange connection. Turn the shaft once. Half of the difference between the observed maximum and minimum values is the measured value.		Dial gauge	Work accuracy = 0.01 when D \leq 200 As below when D > 200	Work accuracy = 0.02 when D \leq 200 As below when D > 200 $\frac{0.04}{0.02}$	Work accuracy = 0.03 when D \leq 200 As below when D > 200
Flange type	Perpendicularity with respect to flange surface	Secure the dial gauge on the shaft close to the flange surface. Place the probe of the dial gauge on the flange surface close to flange circumference. Turn the shaft once. The difference between the observed maximum and minimum values is the measured value.		Dial gauge	Work accuracy = 0.03 when D \leq 250 As below when D > 250 $=$	Work accuracy = 0.04 when D ≤ 250 As below when D > 250 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.0	Work accuracy = 0.06 when D \leq 250 As below when D > 250 $0.06 = 0.006$

Warranty

Warranty Period	The warranty period for the Products shall be 18 months after the commencement of delivery or 18 months after the shipment of the Products from the seller's works or 12 months from the Products coming into operation, whichever comes first.
Warranty Condition	In the event that any problem or damage to the Product arises during the "Warranty Period" from defects in the Product whenever the Product is properly installed and combined with the Buyer's equipment or machines, maintained as specified in the maintenance manual, and properly operated under the conditions described in the catalog or as otherwise agree upon in writing between the Seller and the Buyer or its customers; the Seller will provide, at its sole discretion, appropriate repair or replacement of the Product without charge at a designted facility, except as stipulated in the "Warranty Exclusions" as described below. However, if the Product is installed or integrated into the Buyer's equipment or machines, the Seller shall not reimburse the cost of: removal or re-installation of the Product or other incidental costs related thereto, any lost opportunity, any profit loss or other incidental or consequential losses or damages incurred by the Buyer or its customers.
Warranty Exclusions	 Notwithstanding the above warranty, the warranty as set forth herein shall not apply to any problem or damage to the Product that is caused by: installation, connection, combination or integration of the Product in or to the other equipment or machine that is rendered by any person or entity other than the Seller; insufficient maintenance or improper operation by the Buyer or its customers, such that the Product is not maintained in accordance with the maintenance manual provided or designated by the Seller; improper use or operation of the Product by the Buyer or its customers that is not informed to the Seller, including, without limitation, the Buyer's or its customers, operation of the Product not in conformity with the specifications, or use of lubricating oil in the Product that is not recommended by the Seller; any problem or damage on any equipment or machine to which the Product is installed, connected or combined or on any specifications particular to the Buyer or its customers; any changes, modifications, improvements or alterations to the Product or those functions that are rendered on the Product by any person or entity other than the Seller; any parts in the Product that are supplied or designated by the Buyer or its customers; earthquake, fire, flood, sea-breeze, gas, thunder, acts of God or any other reasons beyond the control of the Seller; normal wear and tear, or deterioration of the Products, parts, such as bearings, oil-seals; any other troubles, problems or damage to the Product that are not attributable to the Seller.

SAFETY PRECAUTIONS

- Observe the safety rules for the installation site and equipment strictly (Industrial safety and health law, technical standard for electric facilities, extension rules, plant explosion guidelines, building standards law, etc).
- Read the maintenance manual carefully before use. Request a copy from the distributor of the Product or our Sales Department if the maintenance manual is not handy. A copy of maintenance manual should always reach the actual user of the Product.
- Select a sufficient product for the usage condition and application.
- Install protective equipment on the machine side when the machine is used for applications which may cause loss of human life or significant loss in facility, such as use for human transportation or elevators.
- Install an oil pan or other preventive devices in case of oil leakage due to failure or termination of service life when the machine is used for food processing equipment, clean room, or other applications that are sensitive to oil.

MEMO